Autumn_Semester_BSc_Level_Electrical_eng_in_transport_Es1-05-V

Transkrypt

Autumn_Semester_BSc_Level_Electrical_eng_in_transport_Es1-05-V
Page 1 of 3
SUBJECT DESCRIPTION
(Faculty seal)
1) Subject:
ELECTRICAL ENGINEERING IN TRANSPORT
2) Code:
Es1-05-V
3) Valid since academic year: 2012/2013
4) Education level: B.Eng.
5) Form of education: day studies
6) Branch of study: ELECTRICAL ENGINEERING (RE)
7) Profile: general
8) Specialization: Electrical engineering
9) Semester: V
10) Leading department:
Institute of Electrotechnics and Informatics/ Department of Electrical Machines and Electrical Engineering in
Transport
11) Lecturer: Rafał Setlak, M.Eng, Ph.D.
12) Classification of subject: common subject
13) Subject status: optional
14) Language: English
15) Introductory subjects, initial requirements:
Basic introductory subjects are Physics, Theory of Electrical Circuits, Electrical Machines, Mechanics, Electrical
Devices, Electrical Drives, Operational Safety of Electrical Devices. Student attending the classes should
comprehend basic physical phenomena in theory of electrical circuits and electrical machines, should be able to
calculate currents, voltages and power in electrical circuits, should be acquainted with design and principles of
operation of electrical devices. He/she should be aware of operational safety issues and understand the necessity of
energy transformation in vehicle drives.
16) Aim of the subject:
The student should acquire adequate competence in physics (scope corresponding to mechanics of vehicle motion),
electrical and magnetic phenomena in vehicle drive systems, issues related to generation, transmission and
distribution of electrical energy in transport devices. Competence should also be acquired in drive systems used in
EV, ICE, HEV and electrical traction.
17) Effects of education:1
No.
Description
Verification
Type of
class
Reference to
effect for study
branch
K_W02+
K_ W06+++
K_ W07+++
K_W10++
K_ W06+++
K_ W07+++
K_W11++
K_U26+++
K_W08++
K_W15+++
1
Student understands principle of operation of electrical
machines, drive systems and mechatronic systems used in
transport and their applications in cars.
Test (open-ended
questions)
lecture
2
Student understands general issues related to generation and
distribution of electrical energy in vehicles.
Test (open-ended
questions)
lecture
3
Student knows principles of operational safety of electrical
devices and installations, knows and comprehends principles
of car wiring installation designs.
Student is able to plan and carry out measurements of
characteristics and electrical/mechanical parameters of basic
quantities characterizing elements and electrical devices in
vehicles.
Student is able to find and acquire information on design and
operation of vehicle drive systems.
Test (open-ended
questions)
lecture, lab
Lab reports
lab
K_U03++
K_U07+++
K_U08+++
Lab reports
lab
K_U01+++
4
5
1
enumerate 5-8 effects
Z1-PU7
Wydanie N1
Załącznik Nr 5 do Zarz. Nr 33/11/12
Page 2 of 3
6
Student is able to identify types of drives and energy sources
in transport vehicles.
7
Student successfully carries out assigned tasks both
individually and as a team member.
Observation and
assessment of assigned
tasks
Observation and
assessment of assigned
tasks
lab
lab
K_U13+
K_U14++
K_U18+++
K_K03+++
K_K04++
18) Types and lengths of classes (number of hours)
Lecture
Exercise Class
Lab Class
Project
Seminar
30
--
15
--
--
19) Subject matter: (separately for each class type)
Lecture:
Basic equation of vehicle motion, resistance to motion of road vehicles. Development in design of EV and HEV.
Fuels used in transport, ecological energy sources. CO2 issues in land transport. Selected regulations of EU related
to transport and reduction of CO2 emission. Selected issues of design and operation of supply systems and control
of ICE, basics of diagnosing Diesel engines control systems (Common Rail, UPS, VR pumps). Basic operational
parameters and characteristics of IC engines used in transport. HEV structures. Ecological and economic aspects of
EV and HEV operation. Design of modern electrical motors used in transport. Design and basic parameters of
supply systems in electric traction, metro, tram lines. Basic principles of design of rail traction networks. Drive
systems of selected vehicles such as TGV, ICE, KTX.
Laboratory work:
1. Determination of inertia of machine parts and machines in vehicles.
2. Energy sources for ecological vehicles – charging batteries PbPbO2, Ni-MH,
3. Series diagnostics of ECM in modern car
4. Ignition/injection system – oscilloscope measurements
5. Determination of driving range of electrical bike
6. Investigation of power parameters of NiMH battery and photovoltaic cells of EV
7. Determination of inertia of rotating parts of machines in vehicles
8. Investigation of selected electrical parameters of ultracapacitors
9. Selected diagnostic tests run with the help of KTS diagnoscope
10. Testing of selected components of ignition/injection system ML4.1.
20) Exam: NO
21) Basic references:
1. Popławski E.: Samochody z napędem elektrycznym, WKŁ Warszawa 1994 r.
2. Szumanowski A.: Akumulacja energii w pojazdach, WKŁ Warszawa 1984 r.
3. Podowski J., Kacprzak J., Mysłek J.: Zasady trakcji elektrycznej, WKŁ Warszawa 1980 r.
4. Andrzejewski R.: Stabilność ruchu pojazdów kołowych. WNT, Warszawa 1997,
5. Kacprzak J.: Teoria trakcji elektrycznej, Wydawnictwa Politechniki Warszawskiej, Warszawa 1991 r.
6. Kałuża E.: Zbiór zadań i ćwiczeń projektowych z trakcji elektrycznej, Skrypt Uczelniany Politechniki Śląskiej
Nr 1848, Gliwice 1994 r.
7. Afanasjew L.L., Djakow A.B., Iiarionow W.A.: Czynne bezpieczeństwo samochodu. WKŁ, Warszawa 1986,
8. Informatory techniczne BOSCH, WKŁ,
9. Merkisz J., Mazutek S.: Pokładowe systemy diagnostyczne pojazdów samochodowych, WKŁ,
10. Trzeciak K.: Diagnostyka samochodów osobowych, WKŁ,
11. Rokosch U.: Układy oczyszczania spalin i pokładowe systemy diagnostyczne samochodów, WKŁ
22) Supplementary references:
1. Glinka T.: Mikromaszyny elektryczne wzbudzane magnesami trwałymi. Wyd. Pol. Śląskiej. Gliwice 2002
2. Lanzendoerfer J., Szczepaniak C.: Teoria ruchu samochodu, WKŁ, Warszawa 1980,
3. Siłka W.: Energochłonność ruchu samochodu. WNT, Warszawa 1997,
4. Siłka W.: Teoria ruchu pojazdu. WNT, Warszawa 2002,
23) Amount of student’s work necessary for achieving proposed effects
Z1-PU7
Wydanie N1
Załącznik Nr 5 do Zarz. Nr 33/11/12
Page 3 of 3
No.
Number of hours in class/ Student’s own work
Type of class
1.
Lecture
30 h / 40 h – including literature review and supplementing subject matter presented in class (15h), revision
(24 h), participation in test (1 h)
2.
Exercise class
/
3.
Lab class
4.
Project
/
5.
Seminar
/
6.
Other
/
Total:
45 h / 75 h
15 h / 35 h - including literature review, preparation for lab work (15 h), preparation and discussion of
lab reports (20 h)
120
24) Total:
25) Number of ECTS points:
2
4
26) Number of ECTS points obtained in classes with direct participation of
teacher:
1
27) Number of ECTS points obtained in practicals (lab classes, projects):
2
28) Notes:
Approved:
………………………….….
(date and signature of lecturer)
2
…………………………………………………....
(date and signature of Head of Institute/Chair/
Head of Foreign Languages College /Head of Interfaculty Division)
1 ECTS point – 30 hours
Z1-PU7
Wydanie N1
Załącznik Nr 5 do Zarz. Nr 33/11/12

Podobne dokumenty