Program wykladu

Transkrypt

Program wykladu
Program wykładu
Materiały do wykładu i do zajęć laboratoryjnych znajdują się na stronie:
http://www.kt.agh.edu.pl/~pacyna
Część I Wyznaczanie trasy w sieciach opartych na protokołach internetowych
Podstawy działania protokołów doboru trasy








routing and forwarding,
static -, dynamic-, default routing,
types of routing protocols,
principles of distance vector protocol,
typical problems and limitations of distance vector,
Bellman-Ford algorithm,
Dijkstra SPF algorithm, spanning tree, link-state advertisements, typical metrics,
comparison of link-state and distance-vector,
Protokół RIP
 RIP1: basic features and resulting properties,
 classful vs. classless protocols and implications, routing per host, network, subnetwork,
 propagation of reachability information, RESPONSE message,
 routing table update based on the received information,
 RIP2: changes from RIP1 to RIP2.
Protokół OSPF
 properties of link-state protocols, advantages over distance-vector protocols,
 functions supported by OSPF, metric types,
 Hello protocol: protocol functions,
 building adjacency for database synchronisation,
 router ID, link parameters,
 requirements for neighbouring routers to become adjacent,
 network types: propagation of LS advertisements, impact on neighbourship,
 broadcast networks: adjacency management, propagation of advertisements,
 Designated Router: role, election of the DR, pseudo-node, link metrics to- and from pseudo-node, link state
exchange on broadcast links,
 flooding protocol: LS advertisement, LS Update message types, reliability of flooding,
 link state propagation (flooding)
 bringing-up adjacency on partitioned networks,
 Areas: backbone, non-backbone, area-border routers, naming areas, optimization of flooding, convergence
problem, looping issues, choice of a path to a network in other area, cost computation,
 area definition examples, inverse masks (wildcard masks).
 address summarization, implications,
 LSA types, LS records in database.

AS BR routers, Route redistribution, administrative distance, route preference including: intra-area, interarea routes, E1 and E2 routes.
Protokół BGP
 evolution of the Internet and related problems,
 autonomous systems, AS types, domains vs. AS, AS names and name assignment,
 traffic types, customer-provider relationship, 3-tier Internet architecture,
 domains: properties of domains, consequences of domain-based organization of the internet – advantages
and recent challenges,
 assumptions for BGP protocol design, vector-path concept,
 role of intra-domain and inter-domain routing protocol, combination of both to provide reachability,
 BGP speakers and peers, BGP sessions, interior-, exterior peering, iBGP, eBGP, ieBGP, operational
differences between iBGP and eBGP,
 BGP route,
 UPDATE message: NLRI, AS PATH attribute types,
 routing information databases (RIBs) in a BGP router, policy engine, routing policies
 BGP decision process,
 learning, processing and advertising a prefix, next-hop reachability,
 selected attributes (MED, LOCAL_PREF, NEXT_HOP), Interdomain traffic engineering with BGP
 limitations of LOCAL_PREF and MED attributes
 Methods to influence decision process such as, for example, AS path prepending and other.
 Współpraca protokołów doboru trasy. Redystrybucja. Dystans administracyjny oraz jego znaczenie przy
wyborze najlepszej trasy.
Część II. Sieci wydzielone BGP-MPLS






Cechy charakterystyczne sieci wydzielonych i przeznaczenie
Znaczenie protokołu BGP w realizacji usługi BGP-MPLS VPN,
Znaczenie protokołu MPLS w realizacji usługi BGP-MPLS VPN,
Rozszerzenia protokołu BGP pod kątem wsparcia sieci BGP-MPLS VPN,
Rozgłaszanie adresów sieci, izolacja przestrzeni adresowych, tablice VRF
Atrybuty Route target oraz Route distinquisher oraz ich zastosowanie.
Część III. Migracja w kierunku sieci IPv6








background information: classful addressing, subnetting, CIDR, incurred problems,
objectives for IPv6, IPv6 origins,
comparison of IPv4 and IPv6, packet header structure, simplifications, extensions, options,
IPv6 addressing: address space, address format, types, structure, motivation for structured address format,
special addresses,
current status of IPv4 and IPv6,
multicast addresses: purpose, format prefix, scoping, flags, IP4-compatibility addresses,
Neighbour Discovery Protocol: functions, NDP messages, stateless and statefull address autoconfiguration,
MTU discovery,
status of deployment and perspectives.
Część IV Wsparcie dla mobilności w sieciach opartych na protokołach internetowych
Protokoły wsparcia mobilności
 types of mobility, motivation for mobility, problem statement,
 mobility requirements,
Mobile IPv4
 Mobile IPv4: mobility agents, mobility basic scenario, functional assumptions in MIPv4 design,
 address binding, readdressing, readdressing types in visited network,
 MIPv4 operation, triangle routing, functions supported by MIPv4,
Mobile IPv6
 Mobile IPv6: architectural differences from MIPv4, integration with IPv4 and related standards,
 mobility-related functions for mobile terminal, new functions for home agent,
 Mobile IPv6 mobility scenario, binding update to home and correspondents, binding cache,
 enhanced security: return routability, home test, care-of test, seamless handover,
 changes in IPv6 due to mobility: binding cache, binding update list, home agent list, mobility headers,
Fast Mobile IP
 Fast Mobile IPv6 (FMIP): handover latency, latency reasons, FMIP-specific optimizations,
 OAR—NAR tunnel setup, predictive mode, reactive mode.
Proxy Mobile IP
 Fast Mobile IPv6 (FMIP): handover latency, mobility domains, intra-domain and inter-domain handoffs,
PMIP-specific optimizations,