Development and optimization of casting technology on part of the

Transkrypt

Development and optimization of casting technology on part of the
Development and optimization of casting technology on part of the suspension of
a heavy vehicle used in difficult environmental wetland conditions
Opracowanie oraz optymalizacja konstrukcji odlewu wahacza maszyny ciężkiej
pracującej w trudnych warunkach środowiska wodno-błotnego
Marcin Małysza1, Robert Żuczek1, Stanisław Pysz1, Andrzej Gil1, Piotr Wieliczko1, Piotr Kowalski1,
Krzysztof Wańczyk1
1
1
Instytut Odlewnictwa, Centrum Projektowania i Prototypowania, ul. Zakopiańska 73, 30-418 Kraków
Foundry Research Institute, Design and Prototyping Centre, ul. Zakopiańska 73, 30-418 Kraków, Poland
E-mail: [email protected]
Received: 19.07.2016. Accepted in revised form: 31.12.2016.
Abstract
The development of a new element is a very complex procedure requiring a combination of many factors related to the
design and manufacture phases. The most efficient way is to
use computer simulation which allows for verification of the
whole design and production process. Over the years, the
development of computer technologies has allowed for the
development of an Integrated Computational Material Engineering (ICME). This method in logical sequence makes it
possible to integrate the project activities, to develop new
manufacturing methods, to select suitable materials and
to verify the final process. Such multi-threaded operations
significantly shorten the time required for the production of
the prototype which speeds up the implementation of the
planned production of the designed casting. The additional
advantage of such work is the possibility of ongoing monitoring of the changes and their impact on the final product.
© 2016 Instytut Odlewnictwa. All rights reserved.
DOI: 10.7356/iod.2016.24
lacji komputerowej, która znajduje zastosowanie w ocenie
założeń konstrukcyjnych oraz analizę numeryczną zjawisk
występujących w trakcie wytwarzania. Wieloletni rozwój
takiego podejścia pozwolił na stworzenie zintegrowanego
systemu projektowania z ang. Integrated Computational Material Engineering (ICME). Ogólna charakterystyka metody
polega na utworzeniu logicznego ciągu przyczynowo-skutkowego projektowania, doboru materiału i weryfikacji procesu wykonywania oraz eksploatacji. Takie wielowątkowe
podejście pozwala na znaczące skrócenie czasu wymaganego do przygotowania produkcji funkcjonalnego prototypu,
a następnie wprowadzenie go do testów przemysłowych.
Niewątpliwą zaletą jest możliwość ciągłego monitorowania
zmian konstrukcyjnych i technologicznych oraz ich wpływ na
efekt końcowy produktu.
Słowa kluczowe: zintegrowane projektowanie (ICME), symulacja komputerowa, stopy aluminium, szybkie prototypowanie,
optymalizacja odlewu
Keywords: ICME, simulation, aluminum alloy, rapid prototyping, casting optimization
1. Introduction
Streszczenie
Opracowanie nowej konstrukcji jest bardzo skomplikowaną procedurą wymagającą połączenia wielu zazębiających
się kroków projektowych połączonych z przesłankami technologicznymi wybranej metody wytwarzania. Obowiązujące
trendy projektowania uwzględniają wykorzystanie symu-
Modern techniques for the production of prototype
castings include advanced design technologies. The
design process must be considered as a logical chain
of events. Using computer aided design, manufacturing
and computer simulation supports that process. Such
a solution allows to take into consideration a number of
risks associated with the manufacturing process of the
363
M. Małysza, R. Żuczek, S. Pysz, A. Gil, P. Wieliczko, P. Kowalski, K. Wańczyk: Development and optimization of casting…
castingprocess
part [1,2,3].
Established
with the prototype
manufacturing
of the
prototypemethodology
casting part
includes
the
optimization
of
the
initial
geometry
of the
hed methodology includes the optimization of the initial geometry
swing
arm
of
the
heavy
vehicle
used
in
difficult
wetland
m of the heavy vehicle used in difficult wetland environmental
environmental
prototype
withis
prototype vehicle
with theconditions.
highlightedThe
casting
of the vehicle
swing arm
the
highlighted
casting
of
the
swing
arm
is
presented
Figure 1.
in Figure 1.
lation conditions assume that the weight of the vehicle
is m = 6000 kg and for one arm constitutes 1/6 of the
total weight. The dynamic surplus ratio is on the level of
k = 1.3. For the initial design, static impact of external
forces is transferred by the fixed pipe to the wheels and
powertrain. The example of load schematic for one of
the optimized shapes is shown in Figure 3.
A B
risks associated with the manufacturing process of the prototype casting part
[1,2,3]. Established methodology includes the optimization of the initial geometry
of the swing arm of the heavy vehicle used in difficult wetland environmental
Fig. 1. Prototype
and the
swing
Fig.vehicle
1. Prototype
vehicle
and the swing
conditions.
The prototype
vehicle
with
the arm
highlighted
castingarm
of the swing arm is
ys. 1. Koncepcja
projektowa
pojazdu
oraz
projektowany
wahacz
presentedRys.
in the1.Figure
1.
Koncepcja
projektowa pojazdu oraz projektowany
wahacz
C
D
mization
ization procedure is based on the strength criterion and the
Fig. 3. The load schematic used in the exploitation
e selected casting
alloy.
The use of the ICME methodology [4]
2. Shape
optimization
simulation with the force – A ≈ 4600 N, moment –
ool to shape design based on the numerical analysis of exploitation
B ≈ 36 000 N∙mm and two fix points C, D
The optimization
procedure
is based
the strength
properties of used
cast materials
and integrate
the on
results
in the an
Rys. 3. Uproszczony schemat obciążenia wykorzystany
criterion
and the
properties
of the
of an essence.
The ICME
approach
allows
for selected
reducing casting
the time
w trakcie analizy eksploatacyjnej, siła A – A ≈ 4600 N,
The use
the ICME
[4]Additional
utilises
opment andalloy.
application
of
a1. Prototype
new
designed
component.
Fig.of
vehicle methodology
and the
swing arm
moment – B ≈ 36 000 N∙mm, utwierdzenie C, D
Rys.shape
1. Koncepcja
projektowa
wahacz
a tool to
based
onoraz
theprojektowany
numerical
analysis
ieved for example
in
thedesign
field
of pojazdu
conceptual
design,
material
of exploitationdesign,
conditions
and properties
of used
cast
ualification,
manufacturing
process
selection,
2. Shapecomponent
optimization
materials
and
integrate
the
results
in
an
essential
form.
d optimization, and process verification. The Figure 2 presents the The stress analysis conducted in the ANSYS software
The
optimization
procedure
is based
on thethe
strength
criterion inand allows
the
The
approach
allows
reducing
time needed
one to visualize the result in the form of stress
f the swing
armofICME
during
the optimization
procedure.
properties
the selected
casting alloy. The
use of the ICME methodology [4]
development and application of a new designed com-
fields in the construction. In Figure 4 the first analysis
utilises gives a tool to shape design based on the numerical analysis of exploitation
ponent.
Additional
savings
are achieved
for example
conditions
and properties
of used
cast materials
and integrate
the results in
in theofanthe initial design is presented.
the
fieldof of
design,
material
selection
andthe time
essential
form.
an conceptual
essence. The ICME
approach
allows
for reducing
neededqualification,
in developmentcomponent
and application
of a new
designed component.
Additional
design,
manufacturing
process
savingsselection,
are achieved
for example in
theoptimization,
field of conceptual
development
and
and design,
processmaterial
selection and qualification, component design, manufacturing process selection,
verification. The Figure 2 presents the external shape
development and optimization, and process verification. The Figure 2 presents the
the of
swing
armarm
during
procedure.
externalofshape
the swing
duringthe
the optimization
optimization procedure.
2. Optimization steps of the design changes of the swing arm shape
Rys. 2. Kolejne kroki optymalizacji kształtu wahacza
2
Fig. 2. Optimization steps of the design changes of the swing arm shape
2. Kolejne kroki
optymalizacji
Fig. 2. Rys.
Optimization
steps
of the kształtu
designwahacza
changes of
the swing arm shape
2
Fig. 4. Stress distribution in the swing arm during
the exploitation simulation
Rys. 4. Rozkład pola naprężeń w przykładowym kształcie
wahacza w trakcie symulacji eksploatacji
Rys. 2. Kolejne kroki optymalizacji kształtu wahacza
The optimization procedure is based on the strength
criterion and the properties of the selected casting alloy
[5]. Considering the load schematics representing the
exploitation conditions, certain nodes exposed to the
formation of high stress were optimized [6]. The simu-
364
The analysis of the normal stress distribution in the
swing arm construction shows that occuring gradients
of compressive and tensile stresses significantly exceed
the maximal value. The next steps of structural optimization were performed to achieve a structure that will
allow carrying the assumed load in exploitation condi-
Prace IOd 4/2016
The
analysis
of
the
normal
stress
distribution
in
the
swing
arm
construction
M. Małysza,
Żuczek, S.of
Pysz,
A. Gil,
P. Wieliczko,
P. Kowalski,
K. Wańczyk:
Opracowanie
optymalizacja…
TheR.analysis
analysis
of the
the
normal
stress
distribution
in the
the swing
swingoraz
arm
construction
The
normal
stress
distribution
in
arm
construction
The
analysis
of the
normalofstress
distribution
intensile
the swing
arm significantly
construction
shows
that
occuring
gradients
compressive
and
stresses
The
analysis
of gradients
the
normalof
stress
distribution
intensile
the swing
arm significantly
construction
shows
that
occuring
gradients
of
compressive
and
tensile
stresses
significantly
shows
that
occuring
compressive
and
stresses
shows that
occuring value.
gradients
of next
compressive
and
tensile stresses
significantly
exceed
the
maximal
The
steps
of
a
structural
optimization
were
shows that
occuring
gradients
of next
compressive
and
tensile stresses
significantly
exceed
the
maximal
value.
The
next
steps
of
structural
optimization
were
exceed
the
maximal
value.
The
steps
of
aaa structural
optimization
were
value.
The
next
steps
of
structural
optimization
were
exceed
the
maximal
performed
to
achieve
a
structure
that
will
allow
to
carrying
the
assumed
load
in
exceed
theto
maximal
value.
next
oftotoa carrying
structural
optimization
were
tions.
Additionally,
optimization
will
allow
for The
designing
ofsteps
the
optimization
process,the
the
virtual
– final
casting
performed
to
achieve
a
structure
that
will
allow
carrying
the
assumed
load
in
performed
achieve
a
structure
that
will
allow
assumed
load
in
performed
to
achieve
a
structure
that
will
allow
to
carrying
the
assumed
load
in
a economically
reasonable
manufacturing
technology
weight
will decrease
by allows
15%
compared
to the
initial
exploitation
conditions.
Additionally,
the
optimization
will
for
designing
performed
to
achieve
a
structure
that
will
allow
to
carrying
the
assumed
load
in
exploitation
conditions.
Additionally,
the
optimization
will
allows
for
designing
exploitation
conditions.
Additionally,
the
optimization
will
allows
for
designing
aaaa
exploitation
Additionally,
optimization
allows
for
for prototype
castingsconditions.
as well as minimizing
necessary the
design.
The criterionwill
which
was used
indesigning
the selection
economically
reasonable
manufacturing
technology
for
prototype
castings
as
well
exploitation
optimization
will
allows
forthedesigning
a
economically
reasonable
manufacturing
technology
for
prototype
castings
as
well
economically
reasonable
manufacturing
technology
for
prototype
as
well
machining.
In Table 1conditions.
the
results for Additionally,
different
versions the
of
the
casting material
was
basedcastings
on
safety
factor
economically
reasonable
manufacturing
technology
for
prototype
castings
as
well
as
minimizing
of
necessary
machining.
In
Table
the
results
for
different
versions
economically
reasonable
manufacturing
technology
for
prototype
castings
as
well
are gathered.
for
assumed
exploitation
conditions
and the
material
as
minimizing
of
necessary
machining.
In
Table
the
results
for
different
versions
as
minimizing
of
necessary
machining.
In
Table
3333the
results
for
different
versions
as
minimizing
of
necessary
machining.
In
Table
the
results
for
different
versions
The
strongest
stress
concentrations
are
located
on
strength
index.
The
comparison
analysis
was
conducted
are
gathered.
as
minimizing
of necessary machining. In Table 3 the results for different versions
are
gathered.
are
gathered.
aresurfaces
gathered.
the side
near the crossing on the vertical walls for the material A201, A355, A356 and ENAC-43300
arecentral
gathered.
and the
ring of the optimized design. The local- which was chosen as the best suitable material. In FigTable
1.1.Compared
Compared
results
of
numerical
analysis
for
different
shapes
of
swing
arm
Table
Compared
results
of
numerical
analysis
for
different
shapes
of
swing
arm
ized stress values
do not
40 MPa.
Inof
the
original analysis
ure
5 thefor
estimated
safety
factor
in the arm
final
Table
1.
results
different
shapes
of
Table
1. exceed
Compared
results
ofnumerical
numerical
analysis
for
different
shapes
ofswing
swing
arm design of
Tabela
1.
Porównanie
kolejnych
kształtów
konstrukcji
wahacza
version of the element,
stress
is inof
thenumerical
range
the
swing for
arm
is presented.
Tabela
1.
Porównanie
kolejnych
kształtów
konstrukcji
wahacza
Table 1.occurring
Compared
results
analysis
different
shapes
of
swing
arm
Tabela
1.
Porównanie
kolejnych
kształtów
konstrukcji
wahacza
Tabela 1. Porównanie kolejnych kształtów konstrukcji wahacza
of the critical nodes approximately
50
MPa.
As
a
result
Tabela 1. Porównanie kolejnych kształtów konstrukcji wahacza
Total
deformation
Total
deformation
Total
deformation
Maximal
Equivalent
Stress
Total
deformation
Maximal
Equivalent
Stress
Maximal
Equivalent
Stress
Table 1. Compared
results
of
numerical
analysis
for
different
shapes
of swing arm Mass (Masa),
Version
(Odkształcenia
Maximal
Equivalent
Stress
Version
(Odkształcenia
Mass
(Masa),
Total
deformation
Version
(Odkształcenia
Mass
(Masa),
(Naprężenia
maksymalne),
Version
(Odkształcenia
Masskg
(Masa),
(Naprężenia
maksymalne),
Maximal
Equivalent
Stress
maksymalne),
Tabela 1.(Naprężenia
Porównanie
kolejnych
kształtów
konstrukcji
wahacza
(Wersja)
maksymalne),
(Naprężenia
maksymalne),
(Wersja)
maksymalne),
kg
Version
(Odkształcenia
Mass
(Masa),
(Wersja)
maksymalne),
kg
MPa
(Wersja)
maksymalne),
kg
MPa
(Naprężenia
maksymalne),
MPa
mm
MPa
mm
(Wersja)
maksymalne),
kg
mm
Maximal Equivalent
mm mm /
Total deformation,
Mass, kg /
MPa
Version/Wersja
Stress, MPa / Naprężenia
mm
Odkształcenia maksymalne, mm
Masa, kg
maksymalne, MPa
45.6
45.6
45.6
45.6
45.6 45.6
0.21
0.21
0.21
0.21
0.21
0.21
102.5
102.5
102.5
102.5
0.53
0.53
0.53
0.53
102.5102.5
60.4
48.3
48.3
48.3
48.3
48.348.3
40.04
40.04
40.04
40.04
0.53
0.53
40.04
40.04
0.46
39.47
60.4
60.460.4
60.4
0.46
0.46
0.46
0.46
39.47
39.47
39.47
39.47
66.6
66.666.6
66.6
66.6
66.6
66.6
0.48
0.48
0.48
0.48
0.48
0.48
0.48
33.05
33.05
33.05
33.05
86.3
86.386.3
86.3
0.42
0.42
0.42
0.42
39.29
39.29
39.29
39.29
45.6
45.645.6
45.6
0.46
0.46
0.46
0.46
45.62
45.62
45.62
45.62
60.4
0.46
86.3
86.3
0.42
0.42
45.6
45.6
42.3
42.3
0.46
0.46
4444
4
0.31
0.31
39.47
33.05
33.05
33.05
39.29
39.29
45.62
45.62
41 41
The strongest stress concentrations are located on the side surfaces near the
crossing on the vertical walls and a the central ring of the optimized design. The
localized stress values do not exceed 40 MPa. In the original version of the
element, occurring stress is in the range in of the critical nodes approximately
Transactions of FRI 4/2016
365
Fig. 6. The natural solidification in the casting geometry with highlighted hot spots
Rys. 6. Analiza
procesu naturalnego
krzepnięciaand
z wyszczególnieniem
węzłów
cieplnych
M. Małysza, R. Żuczek, S. Pysz, A. Gil, P. Wieliczko, P. Kowalski,
K. Wańczyk:
Development
optimization of
casting…
The casting technology includes different variations of gating and feeding
systems for the casting. The Figure 7 presents the different concepts of casting
setups. The simulation of the casting technology helped to develop optimized
quality,
accuracy
and final
properties
technology to good
achieve
castingdimensional
with good quality,
dimensional
accuracy
and final
of swing
the swing
properties of the
arm. arm.
Fig. 5. Distribution of the safet factor in the final desingn of
the rocker arm for the chosen material
Rys. 5. Rozkład współczynnika bezpieczeństwa
dla końcowego kształtu wahacza
Fig. 7. Concepts of the casting technologies
Fig.
7. Kolejne
koncepcjeof
technologii
odlewania
wahacza
Fig.
7. Concepts
the casting
technologies
Fig. 7. Kolejne
koncepcje
technologii
odlewania
wahacza
Boundary conditions
of the
simulation
were chosen
to be close
to the real
conditions that occurs in a real casting process, which involves viscousity, surface
tension, heat transfer
for liquid
metal and of
mold,
entrainment
andchosen
defect tracking,
3. Development of the casting technology
Boundary
conditions
the air
simulation
were
to
density evaluation
and solidification
of liqiud metal
inoccurs
the cavity.
be close
to the real conditions
that
in aThe
realvisualisation
castof filling
process
presentedwhich
in Figure
8.
The optimized geometrical shape of the swing
arm
ingisprocess,
involves
viscousity, surface tension,
was used in the computer simulation of the casting process. With the addition of the necessary technological
treatments which includes machining allowances, wall
and ribs tilting. The first step is the numerical analysis
of the natural solidification process for the determination of the solidification path for the designed part.
The Figure 6 presents the location of the areas which
solidifies last. During the design process of the casting
technology the efficient feeding in that area needed to
be maintained.
heat transfer for liquid metal and mold, air entrainment
6
and defect tracking, density
evaluation and solidification
of liqiud metal in the cavity. The visualisation of filling
process is presented in Figure 8.
Fig. 8. Visualisation of the filling process
Rys. 8. Wizualizacja wyników procesu wypełniania wnęki
Fig. 6. The natural solidification in the casting geometry with highlighted hot spots formy podczas wirtualnego eksperymentu
Fig. 6. The
natural solidification
the casting geometry
Rys. 6. Analiza procesu
naturalnego
krzepnięcia in
z wyszczególnieniem
węzłów cieplnych
with highlighted hot spots
The filling time for the casting technology is approxi-
Rys. 6. includes
Analiza procesu
naturalnego
krzepnięcia
casting technology
different
variations
of gating and
feeding
metely
t = 17 s. The chosen alloy is ENAC-43300 with
z wyszczególnieniem węzłów cieplnych
pouring
temperature T = 660ºC and mould material
for the casting. The Figure 7 presents the different conceptsa of
casting
binded
with
The simulation of the casting technology helped to develop optimizedCO2. The final result of the porosity distribuThe
castingwith
technology
includes dimensional
different variations
tionand
is presented
in Figure 9.
gy to achieve
casting
good quality,
accuracy
final
of gating and feeding systems for the casting. The FigThe simulation shows that the porosities are located
s of the swing arm.
ure 7 presents the different concepts of casting setups.
The simulation of the casting technology helped to develop optimized technology to achieve casting with
366
in the riser and gating system. The casting with the proposed technology and casting conditions should affect
the sound casting. In order to increase the probability
Prace IOd 4/2016
M. Małysza, R. Żuczek, S. Pysz, A. Gil, P. Wieliczko, P. Kowalski, K. Wańczyk: Opracowanie oraz optymalizacja…
of manufacturing good quality casting the analysis was
conducted in additional simulation software – MAGMAsoft. The boundary conditions set up are similar to
Flow3D simulation software.
The casting after machinig, painting and ready for
shipment is presented in Figure 11.
Fig. 9. Predicted porosities in the casting results in
a) Flow3D, b) MAGMAsoft
Rys. 11. Odlew wahacza po przeprowadzonej obróbce
mechanicznej
Fig. 11. Final swing arm casting
Rys. 9. Prognozowane porowatości na podstawie wyników
symulacji w odlewie uzyskanych w programach a) Flow3D,
b) MAGMAsoft
Based on the technology all casting tooling was designed to be manufactured in the rapid prototyping FDM
technique. The melting was performed in the resistant
furnace. During the melting procedure the quality samples were taken to perform the optical spectrometry
analysis. The pouring procedure and the final casting
are presented in Figure 10.
4. Conclusions
1. The use of computer optimization for geometrical
purposes lowers stress levels occurring in the nodes
of the element and reduces the weight.
2. The computer simulation of the casting process
allows designing appropriate casting technology,
which can be used in the rapid prototyping of casting tooling.
3. The use of computer simulation in a logical sequence allows for quick and accurate design of
prototype casting.
Acknowledgements
a)
The work was realized in the project DEMONSTRATOR+ No.: DPA-DEM-1-145/001 co-financed by Innovative Economy Operational Programme 2007−2013.
Priority 1. Research and development of new technologies, Action 1.5. System projects of The National Centre
for Research and Development.
References
1. Kowalski P., K. Wańczyk, M. Małysza, A. Gil. 2015.
„Numerical Analysis of Casting Process of the Diesel
Engine Compressor Rotor”. Archives of Foundry Engineering 15 (sp.is. 2) : 51−54.
b)
Fig. 10. Pouring of the liquid metal (a) and the final
casting (b)
Rys. 10. Proces odlewania ciekłego metalu do formy (a)
oraz gotowy odlew (b)
Transactions of FRI 4/2016
2. Gwiżdż A., M. Małysza, M. Nowak. 2013. „Use of Flow3D Program for simulation of pouring and solidification
process of ductile cast iron castings. Part I”. Transactions of Foundry Research Institute 53 (1) : 35−53.
3. Pysz S., R. Żuczek, E. Czekaj, A. Karwiński,
M. Małysza, P. Sprawka. 2014. „Integration of numerical procedures in the design and manufacturing
technology on the example of a cast component for
367
M. Małysza, R. Żuczek, S. Pysz, A. Gil, P. Wieliczko, P. Kowalski, K. Wańczyk: Development and optimization of casting…
the automotive industry”. Foundry Trade Journal International 188 (3711) : 26−29.
4. Pysz S., J. Piekło. 2013. „The application of Integrated Computational Materials Engineering (ICME) in
foundry practice”. Transactions of Foundry Research
Institute 53 (4) : 57−70.
6. Zachura A., R. Żuczek. 2014. „Innovative design of
a longwall shearer’s haulage system with highly loaded
components of a tribological pair manufactured according to the precise casting technology”. Solid State
Phenomena 223 : 171−180.
5. Pysz S., J. Piekło, M. Małysza. 2014. „The Use of Topology Optimization in Shaping the Strength of Castings”. Solid State Phenomena 223 : 62−69.
368
Prace IOd 4/2016