Badania gruntów - Piotr Jermołowicz

Transkrypt

Badania gruntów - Piotr Jermołowicz
Piotr Jermołowicz – Inżynieria Środowiska
BADANIA GRUNTÓW
1.! Analiza makroskopowa.
Metoda makroskopowa jest uproszczonym badaniem rodzaju i stanu gruntów, a uzyskane
wyniki mają charakter przybliżony. Najczęściej badania makroskopowe obejmują określenie:
- rodzaju i nazwy gruntu,
- stanu gruntu,
- barwy,
- wilgotności,
- zawartości węglanu wapnia.
Próbki do badań makroskopowych pobiera się z każdej warstwy gruntu różniącej się
rodzajem lub stanem, lecz nie rzadziej niż co 1 m głębokości.
Wyróżnia się trzy zasadnicze rodzaje pobieranych próbek gruntów: próbki o naturalnym
uziarnieniu (NU), próbki o naturalnej wilgotności (NW) oraz próbki o naturalnej strukturze
(NNS).
− Próbki o naturalnym uziarnieniu (NU) — to próbki pobrane w sposób zapewniający
zachowanie naturalnego uziarnienia gruntu.
− Próbki o naturalnej wilgotności (NW) — próbki gruntu w stanie rzeczywistego zalegania,
pobrane w sposób zapewniający zachowanie naturalnej wilgotności gruntu.
− Próbki o naturalnej strukturze (NNS) - próbki gruntu w stanie rzeczywistego zalegania,
pobrane w sposób zapewniający zachowanie naturalnej struktury gruntu oraz naturalnej
wilgotności.
Wszystkie próbki powinny być zaopatrzone w zabezpieczoną przed uszkodzeniem kartkę
(metryczkę) z opisem daty, miejsca i głębokości pobrania.
1.1. Oznaczanie rodzaju gruntu
1.1.1. Oznaczanie rodzaju gruntów spoistych
Grunt należy określić jako spoisty, jeżeli po wyschnięciu do stanu powietrzno-suchego
tworzy on zwarte grudki.
Grunt należy określić jako niespoisty, jeżeli po wyschnięciu do stanu powietrzno-suchego
stanowi on niezwiązane ze sobą cząstki lub grudki, rozpadające się pod wpływem lekkiego
nacisku palcem.
Jeżeli grunt jest w stanie wilgotnym, to rodzaj gruntu określa się na podstawie zdolności do
formowania kulki. Grunt spoisty, w przeciwieństwie do sypkiego umożliwia uformowanie
kulki.
Rodzaj gruntów spoistych zależy przede wszystkim od zawartości w nich frakcji iłowej, a
ponadto od zawartości frakcji pyłowej i piaskowej. Wyróżnia się 4 rodzaje gruntów spoistych
(stopnie spoistości), przy czym spoistość nadaje gruntom frakcja iłowa (tab. 1). Rodzaje
Źródło: www.inzynieriasrodowiska.com.pl
gruntów makroskopowo określa się na podstawie próby wałeczkowania, a w przypadkach
wątpliwych - uzupełnionej próbą rozmakania i rozcierania :
a) Próba wałeczkowania
1. Z przeznaczonej do badań grudki gruntu usuwa się ziarna żwirowe i formuje palcami
kulkę o średnicy 7 mm.
2. Z kuleczki formuje się wałeczek na wyprostowanej dłoni, prawą nieznacznie naciskając
grunt i przesuwając wzdłuż lewej z szybkością około 2 razy na sekundę.
3. Czynność prowadzi się aż do uzyskania wałeczka o średnicy 3 mm na całej jego
długości.
4. Jeżeli wałeczek nie wykazuje spękań i nie łamie się przy podniesieniu go w palcach do
góry, zgniata się go, ponownie formuje kuleczkę i wałeczkuje od nowa.
5. Kolejne czynności wałeczkowania wykonuje się tak długo, aż wałeczek po uzyskaniu
średnicy 3 mm rozsypie się lub zaczyna pękać
6. W czasie wałeczkowania gruntu obserwuje się:
a. rodzaj spękań (podłużne czy poprzeczne),
b. zmiany wyglądu powierzchni wałeczka (czy wałeczek pozostaje cały czas
matowy, czy i kiedy nabiera połysku).
7. Rodzaj uszkodzeń i wygląd wałeczka określa rodzaj gruntu (tab. 1),
8. Próbę wałeczkowania przeprowadza się co najmniej na dwóch grudkach gruntu, a w
przypadku wyraźnej niezgodności wyników – dodatkowo na trzeciej kulce.
b) Próba rozmakania
1. Próbkę umieszcza się na siatce o wymiarach boków oczek kwadratowych 5 mm i
zanurza w całości w zlewce z wodą destylowaną
2. Mierzy się czas rozmakania grudki od chwili zanurzenia w wodzie, aż do momentu
przeniknięcia jej przez oczka siatki w wyniku rozpadnięcia
3. Czas rozmakania, zależny od zwartości frakcji iłowej w próbce, pozwala na zaliczenie
jej do odpowiedniego rodzaju gruntu.
c) Próba rozcierania
1. Grudkę gruntu przeznaczonego do badań rozciera się między dwoma palcami
zanurzonymi w wodzie.
2. Jeżeli podczas tego rozcierania pozostaje między palcami dużo ziarn piasku, grunt
zalicza się do grupy pierwszej – gruntów o największej zawartości piasku (tab. 1)
3. Jeżeli w palcach wyczuwa się pojedyncze ziarna piasku, grunt zalicza się do grupy
drugiej – gruntów o pośredniej zawartości piasku jak i pyłu (tab. 1)
4. Jeżeli miedzy palcami nie pozostają ziarna piasku, grunt zaliczamy do grupy trzeciej –
gruntów o minimalnej zawartości piasku, na korzyść zawartości pyłu.
Źródło: www.inzynieriasrodowiska.com.pl
Tab. 1. Oznaczanie rodzaju gruntów spoistych metodą makroskopową
Wskaźnik plastyczności: !" # $ %& ' $ %"
Stopień plastyczności:
!& #
() *$(+
(, *$(+
1.1.2. Przybliżone oznaczanie rodzaju gruntów niespoistych
Do gruntów niespoistych (sypkich zalicza się grunty drobnoziarniste niespoiste oraz grunty
gruboziarniste zawierające do 2% frakcji iłowej.
Rodzaj gruntów niespoistych określa się zgodnie z tab. 2, na podstawie wielkości i zawartości
ziarna poszczególnych frakcji lub ewentualnie za pomocą lupy z podziałką.
Źródło: www.inzynieriasrodowiska.com.pl
Tab. 2. Rodzaj gruntu niespoistych w zależności od zawartości poszczególnych frakcji (dla
oceny makroskopowej)
Nazwa gruntu
Żwir
> 2 mm
> 50
Pospółka
50 – 10
Zawartość frakcji %
> 0,5 mm
-
> 0,25 mm
-
>50
-
Piasek gruboziarnisty
< 10
> 50
-
Piasek średnioziarnisty
< 10
< 50
> 50
< 10
< 50
< 50
Piasek drobnoziarnisty
Piasek pylasty
6.1.3.! Oznaczanie stanu gruntów spoistych
Stan gruntu zależy od ilości i właściwości zawartej w nim wody, a także od składu i
właściwości cząstek stałych. Makroskopowo stan gruntów spoistych należy oznaczać na
podstawie liczby kolejnych wałeczkowań tej samej kulki gruntu, biorąc pod uwagę ile razy
uzyskano wałeczek o średnicy 3 mm bez jego uszkodzeń (tab. 3). Wałeczkowanie
przeprowadza się na gruncie o wilgotności naturalnej, nie wolno zwilżać gruntu nawet jeśli
jest suchy.
Jeżeli z gruntu można uformować kulkę, lecz wałeczek pęka podczas pierwszego
wałeczkowania, grunt znajduje się w stanie półzwartym. Wyróżnienie następnych stanów
określa się na podstawie liczby wałeczkowań tej samej kulki (tab. 3).
Tab. 3. Makroskopowe oznaczanie stanu gruntu
1.1.4.! Makroskopowe badania gruntów organicznych
Grunty organiczne dzieli się w zależności od genezy oznaczonej podczas badań terenowych
oraz zawartości części organicznych oznaczonych orientacyjnie w badaniach
makroskopowych, wyróżniając grunt próchniczny, namuł, gytię i torf.
•! Grunty próchniczne różnią się od gruntów nieskalistych mineralnych zawartością
części organicznych (2-5%). Oznaczeń ich rodzaju dokonuje się tak samo jak
oznaczeń gruntów nieskalistych mineralnych (najczęściej są to grunty drobnoziarniste), dodając do nazwy takiego gruntu, że jest to grunt próchniczny (humusowy), np.
piasek gliniasty, próchniczny.
Źródło: www.inzynieriasrodowiska.com.pl
•! Namuły - większe ilości części organicznych makroskopowo odróżniamy po
„gnilnym" zapachu, ciemnej barwie, a także dużej liczbie wałeczkowań, przy pozornie
niewielkiej wilgotności gruntu. Iom (5÷30%).
•! Torfy mają charakterystyczną strukturę i teksturę włóknistą, porowatą, ze zmienną
ilością nie rozłożonej substancji organicznej. Iom > 30 %.
•! Gytia - jej właściwości zależą od stosunku ilościowego substancji organicznej,
węglanu wapnia oraz części mineralnych bezwapiennych (piasku, pyłu lub iłu). W
zależności od zawartości substancji organicznej wyróżnia się gytie:
!! mineralne (do 10% części organicznych) - w zależności od ilości części
węglanowych i bezwęglanowych oraz substancji organicznej makroskopowo
mogą wykazywać cechy zbliżone do kredy jeziornej (dużą kruchość, jasne
zabarwienie czasem o odcieniu różowym) lub do gruntów spoistych (większą
spójność, szare, brunatne lub niebieskawe zabarwienie).
!! organiczno-mineralne (10-30% części organicznych), - wł. podobne jak
mineralne,
!! organiczne (ponad 30% części organicznych) - w stanie wilgotnym stanowią
substancję koloidalną, podobną do galarety, miękką w dotyku, sprężystą o
barwach ciemnych — szarych, brunatnych. Po wyschnięciu zmniejszają
objętość i twardnieją.
Oznaczanie zawartości części organicznych (Iom) polega na określaniu procentowej straty
masy próbki gruntu (wysuszonej w temperaturze 105 ÷ 110oC) powstałej w wyniku utlenienia
cząstek organicznych próbki 30 % roztworem wody utlenionej lub też w wyniku prażenia.
Metoda utleniania jest metodą podstawową. Metody tej nie należy stosować w przypadku
torfów i namułów oraz gdy badany grunt ma dostrzegalne części drewna, roślin, korzeni itp.
Dla tych przypadków oraz dla gruntów małospoistych zawierających mniej niż 5 % CaCO3
należy stosować metodę prażenia.
Do analiz tych pobiera się próbki o minimalnej masie 300 g.
1.1.5. Określanie barwy gruntu
Jedną z cech makroskopowych gruntu jest jego barwa, często ułatwiająca makroskopowe
wydzielenie różnych rodzajów gruntów. Barwa w niektórych przypadkach jest wynikiem
określonego składu mineralnego gruntu lub zawartych w nim domieszek. Tak na przykład,
związki żelaza trójwartościowego nadają gruntom zabarwienie o odcieniach czerwonych lub
brunatnych, natomiast związki żelaza dwuwartościowego zabarwienie o odcieniach zielonych
i czarnych. Czarne zabarwienie gruntu może być wywołane także obecnością substancji
organicznej, a zielone obecnością glaukonitu.
Barwę gruntu określa się na przełamie bryłki gruntu o wilgotności naturalnej. Określenie
barwy może być wyrazem kilkuczłonowym, przy czym najpierw podaje się intensywność i
odcień barwy, a następnie barwę podstawową, dominującą (na przykład: barwa jasnozielonobrązowa). Przy określaniu barw używa się na ogół nazw kolorów podstawowych w skali
barw. Należy unikać takich określeń, jak beżowy, amarantowy itp. Jeśli barwa gruntu nie jest
jednorodna, określa się charakter tej niejednorodności podając barwy poszczególnych części,
Źródło: www.inzynieriasrodowiska.com.pl
na przykład: grunt o barwie jasnobrązowej z czerwonymi smugami. Należy jednocześnie
pamiętać, że grunt może zmieniać barwę po wysuszeniu. Dlatego też określa się ją w gruncie
o wilgotności naturalnej, a w przypadku określenia barwy gruntu wyschniętego fakt ten trzeba
odnotować.
1.1.6.! Oznaczanie wilgotności gruntu
Makroskopowo wilgotność gruntu określa się wyróżniając pięć stopni wilgotności gruntów
spoistych. Grunt określamy jako:
a) suchy, jeśli grudka gruntu przy zgniataniu pęka, a po rozdrobnieniu daje suchy proszek,
b) mało wilgotny, jeśli grudka gruntu przy zgniataniu odkształca się plastycznie, lecz papier
przyłożony do gruntu nie staje się wilgotny,
c) wilgotny, jeżeli grudka gruntu przyłożona do papieru zostawia na nim wilgotny ślad,
d) mokry, jeżeli przy ściskaniu gruntu w dłoni odsącza się woda,
e) nawodniony, jeżeli woda odsącza się z gruntu grawitacyjnie.
1.1.7. Określanie zawartości węglanu wapnia
Węglany wapnia mogą występować w gruntach bądź w stanie rozproszonym, bądź też w
postaci większych lub mniejszych skupień, kryształków, kukiełek itp. Ilość węglanów w
niektórych gruntach spoistych może dochodzić nawet do 30%. Obecność węglanów w
gruntach powoduje ich silną agregację, co w zasadniczy sposób może mieć wpływ na
inżyniersko-geologiczne właściwości tych gruntów.
Tab.4. Oznaczanie klasy zawartości węglanów (20 % roztwór HCl):
1.2.! Badania według PN-EN ISO 14688
Większość gruntów to twory złożone, zbudowane z:
•!frakcji głównej (dominującej), od której pochodzi nazwa główna (symbol) pisana dużą
literą np. Gr, Sa, Si
•! frakcji drugorzędnych, które są opisywane symbolami gruntu w postaci małych liter np.
gr, sa, si,
Grunty stanowiące przewarstwienia mogą być pisane małymi podkreślonymi literami,
następującymi po głównej frakcji gruntu np. gr, sa, si.
Źródło: www.inzynieriasrodowiska.com.pl
W przypadku gruntów gruboziarnistych (niespoistych) należy precyzować ich opis poprzez
dodanie pierwszych liter przymiotników określających wielkość frakcji: C (coarse - gruby), M
(medium - średni), F (fine – drobny) pisanych dużymi literami.
Nazwę gruntu tworzy kombinacja powyższych terminów np.:
−! piasek gruby ze żwirem drobnym (fgrCSa)
−! pył z piaskiem grubym z domieszką żwiru drobnego (fgrcsaSi)
−! glina ilasta (sasiCl)
−! ił pylasty przewarstwiony piaskiem (siClsa).
Rys.5. Fragment schematu blokowego do oznaczania i opisu gruntów wg PN-EN ISO 14688-1[34]
1.2.1. Metody oznaczania i opisu gruntu
Oznaczanie składu granulometrycznego: w celu oznaczenia rozkładu wielkości cząstek
próbkę należy rozłożyć na płaskiej powierzchni lub na dłoni. Wymiary cząstek próbki należy
porównać ze standardami uziarnienia obejmującymi wydzielenia zawierające materiał o
różnych przedziałach wymiarów cząstek zgodnie z Tab.14. PN-EN ISO 14688.
Ponieważ poszczególne cząstki pyłu i iłu nie są widoczne gołym okiem, do oznaczenia cech
takiego gruntu należy stosować następujące metody:
Źródło: www.inzynieriasrodowiska.com.pl
•! oznaczanie drobnych cząstek
•! oznaczanie wytrzymałości w stanie suchym
•! oznaczanie dylatancji pyłu i iłu
•! oznaczanie plastyczności.
Oznaczanie kształtu cząstek: w przypadku grubych frakcji, opisuje się kształt cząstek w
nawiązaniu do ich stopnia obtoczenia (który wskazuje na stopień zaokrąglenia krawędzi i
naroży), ich ogólny kształt i charakter powierzchni.
Tab.6. Terminy określające kształt cząstek.
Parametr
OSTROŚĆ KRAWĘDZI – STOPIEŃ
OBTOCZENIA
FORMA
CHARAKTER POWIERZCHNI
Kształt cząstki
Bardzo ostrokrawędzisty
Ostrokrawędzisty
Słabo ostrokrawędzisty
Słabo obtoczony
Obtoczony
Dobrze obtoczony
Sześcienna
Płaska
Wydłużona
Szorstka
Gładka
Oznaczanie drobnych cząstek: przy oznaczaniu składu gruntu drobne frakcje występujące w
małej ilości w próbce należy wypłukać, a grubszą pozostałość opisać na podstawie wymiarów
i kształtów cząstek, rodzaju materiału i innych specyficznych składników. Czas trwania i
dokładność procesu przemywania oraz badanie otrzymanego osadu wskazują na rodzaj i
zawartość procentową frakcji drobnych.
Oznaczanie barwy gruntu: Barwa gruntu często wskazuje na skład materiału i jego rozkład.
Barwa pozwala rozróżnić grunty mineralne i organiczne. Z uwagi na fakt, iż wiele gruntów
zmienia szybko swoją barwę na powietrzu, ważne jest, aby barwy określać na świeżo
odsłoniętej powierzchni przy pełnym świetle dziennym. Zaleca się, aby zawsze odnotowywać
takie zmiany barwy, jak te w następstwie utleniania bądź wysuszania.
Tab.7. Oznaczanie wytrzymałości w stanie suchym:
Źródło: www.inzynieriasrodowiska.com.pl
Oznaczanie plastyczności (zwięzłości):
W celu oznaczenia plastyczności (zwięzłości) wilgotną próbkę gruntu należy, wałeczkować
na gładkiej powierzchni, aby otrzymać wałeczek o średnicy około 3 mm, następnie zlepić go
z powrotem i powtarzać wałeczkowanie do chwili, kiedy na skutek utraty wody nie daje się
wałeczkować, a tylko zlepiać. Osiąga się w ten sposób granicę plastyczności.
Tab.8. Oznaczanie plastyczności (zwięzłości):
Tab.9. Oznaczanie zawartości piasku, pyłu i iłu w gruncie:
Uwaga! Gruby pył może być szorstki w dotyku, lecz poszczególne ziarna nie są widoczne
gołym okiem.
Tab.10. Oznaczanie dylatancji pyłu i iłu:
Źródło: www.inzynieriasrodowiska.com.pl
Tab.11. Oznaczanie zawartości węglanów: zawartość węglanów oznaczana jest na
podstawie reakcji gruntu na kroplę 10-procentowego lub rozcieńczonego wodą w
proporcji 3:1 roztworu kwasu solnego.
Tab.12. Oznaczanie konsystencji:
Rys. 1. Trójkąt ISO „krajowy” do określania symboli gruntów wg [1, 2].
Źródło: www.inzynieriasrodowiska.com.pl
Przykładowy formularz badań :
Opis badanych próbek:
Wyniki analizy makroskopowej:
Źródło: www.inzynieriasrodowiska.com.pl
1.2.3. Analiza makroskopowa według PN-EN ISO 14688
Analiza makroskopowa gruntów gruboziarnistych wg PN-EN ISO 14688 :
Źródło: www.inzynieriasrodowiska.com.pl
Źródło: www.inzynieriasrodowiska.com.pl
Źródło: www.inzynieriasrodowiska.com.pl
Analiza makroskopowa gruntów drobnoziarnistych wg PN-EN ISO 14688 :
Źródło: www.inzynieriasrodowiska.com.pl
Źródło: www.inzynieriasrodowiska.com.pl
Źródło: www.inzynieriasrodowiska.com.pl
Źródło: www.inzynieriasrodowiska.com.pl
1.3.! Uwagi krytyczne
Podstawą do wyboru metody wzmacniania podłoży gruntowych lub projektowanego
sposobu posadowienia obiektu jest jego szczegółowe rozpoznanie. Powinno ono
uwzględniać w szczególności lokalne warunki i specyficzne niejednokrotnie potrzeby na
rzecz wyselekcjonowania metody wzmocnienia.
Źródło: www.inzynieriasrodowiska.com.pl
!"#$%&'()*'+,-&*'("./&0/
123/)&4(7')8(9(6-:8
123/)&4(56*.26'
!
Rys. 2. Porównanie efektywności technologii wzmacniania podłoży.
Źródło: www.inzynieriasrodowiska.com.pl
Badania podłoża powinny być wykonane 2 – 3 etapowo:
etap 0 – wstępne w fazie studiów do wyboru lokalizacji trasy lub budowli i oceny
wykonalności ( w tej fazie często można uniknąć sytuowania obiektów na słabych
gruntach lub ograniczyć ich wpływ),
etap I – podstawowe do uzyskania decyzji lokalizacyjnej albo do projektu budowlanego służą one do zaprojektowania konstrukcji oraz do wstępnego wyboru metod
budowy,
etap II – uzupełniające lub kontrolne w fazie projektowania lub budowy obiektu,
uściślające zakres terenowy lub przedmiotowy badań, m.in. właściwości słabych
warstw pod kątem ich wzmocnienia oraz gruntów przydatnych do użycia jako
materiału do robót ziemnych.
Ogólnie zakres badań powinien umożliwiać określenie na ich podstawie warstw
geotechnicznych z dokładnością odpowiadającą wymaganiom obliczeń nośności i
stateczności budowli. Podłoże powinno być rozpoznane do głębokości strefy aktywnej
oddziaływania budowli i zakończyć się w warstwie gruntów nośnych.
Cechy podłoża należy ustalić na podstawie wierceń lub wykopów badawczych, sondowań i
innych badań polowych, badań makroskopowych oraz szczegółowych badań laboratoryjnych.
W każdym przypadku należy zwrócić uwagę na :
•! budowę geologiczną i właściwości geotechniczne podłoża, a szczególnie miąższość i
rodzaj warstw słabych oraz poziom stropu podłoża nośnego,
•! niejednorodności budowy podłoża i występowanie lokalnych gniazd lub soczewek
słabych gruntów,
•! rodzaj i uziarnienie gruntów, parametry geotechniczne, szczególnie słabych warstw
wymagających wzmocnienia lub ulepszenia,
•! prognozowane zmiany właściwości gruntów w wyniku ich wzmocnienia,
•! warunki hydrologiczne: poziomy wód gruntowych, nawierconych i ustabilizowanych,
kierunek ich przepływu, prognoza zmian stanów wód,
•! właściwości chemiczne, zanieczyszczenia gruntu i wód gruntowych oraz ich
agresywność,
•! przeszkody w podłożu mogące utrudnić roboty.
Badania powinny wyjaśnić, czy wzmocnienie rzeczywiście jest potrzebne ? Jeśli tak, to
należy możliwie dokładnie ustalić zakres występowania słabych gruntów, by uniknąć
zbędnych robót wzmacniających. Należy pamiętać, że wiercenia i sondowania są zawsze
tańsze od samego wzmacniania. Dokładnego rozpoznania wymagają szczególnie warstwy
określane zwykle jako nienośne, gdyż ich właściwości fizyko – mechaniczne decydują o
wyborze zabiegów oraz o ich efektach.
Źródło: www.inzynieriasrodowiska.com.pl
Tab. 13. Zalecane metody badań podłoża i określenia parametrów gruntu
Główny cel badań
układ i rodzaj słabych warstw
Zalecane rodzaje badań
-wiercenia, pobranie i badania próbek, uziarnienia itp.;
orientacyjnie : sondowania, zwł. statyczne CPT
warunki wodne
- wiercenia, pomiary w piezometrach, sonda CPT-U
rodzaj gruntu, uziarnienie
- badania próbek gruntu, uziarnienia, części organiczne
ściśliwość słabego podłoża
- presjometr, próbne obciążenie płytą 0,5 – 1 m2,
wielkowymiarowe 4 – 10 m2, M, M0
wytrzymałość na ścinanie
- ścinanie obrotowe VT, sonda CPT, presjometr, Ø, C
stan zagęszczenia
- sondy statyczne CPT, dynamiczne SD
przepuszczalność gruntu
- pomiar współczynnika frakcji k10, próbne pompowania
czas konsolidacji
- współczynnik filtracji k10, współczynnik konsolidacji,
- próbne obciążenie
wytrzymałość i trwałość
- próbne mieszania (laboratoryjne, terenowe), badania
mieszanek
próbek, sondowania kolumn, próbne obciążenia
wytrzymałość gruntu nośnego - sondy CPT, SD, presjometr
Kilka uwag praktycznych
Na terenie Polski, w przeszłości geologicznej mieliśmy 4 okresy zlodowaceń i odwilży.
Doprowadziło to do zdeformowania istniejącego układu warstw geologicznych i powstania
zaburzeń podłoża zwanych deformacjami glacitektonicznymi .Wiąże się to bezpośrednio z
genezą i skonsolidowaniem gruntów.
W grupie gruntów spoistych (zgodnie z normą PN-81/B-03020) wydzielono 4 genezy dla
gruntów spoistych:
A-! grunty spoiste morenowe skonsolidowane,
B-! inne grunty spoiste skonsolidowane
nieskonsolidowane,
C-! inne grunty spoiste nieskonsolidowane,
D-! iły niezależnie od genezy.
oraz
grunty
spoiste
morenowe
Grunty gliniaste
Zmieniają swoją wytrzymałość głównie wskutek procesów fizycznego i chemicznego
wietrzenia, co ujawnia się po wcięciu w podłoże i odsłonięciu go wzdłuż powierzchni skarpy.
Proces ten intensyfikuje się, gdy nie wykonano odpowiedniego odprowadzenia wód
podziemnych i powierzchniowych. Szczególnie intensywnie występuje wówczas ich
odprężenie. Wiązać je należy z odciążeniem glin np. wskutek obniżenia zwierciadła wody.
Ogólnie można stwierdzić, że odprężenie związane jest z filtracją wody, gdyż pod wpływem
sił hydrodynamicznych występuje zwiększenie porowatości glin. Ujawnia się ono szczególnie
w dolnej partii warstwy glin. Ponieważ proces odprężenia związany jest z filtracją wody,
najbardziej intensywnie zachodzi on w glinach piaszczystych i pylastych, najmniej
Źródło: www.inzynieriasrodowiska.com.pl
intensywnie w glinach bez zawartości frakcji piaszczystych i pylastych. Prędkość odprężenia
wzrasta przy tym ze wzrostem spadków hydraulicznych. Bardzo intensywne odprężenie
występuje przy spływie wód powierzchniowych po skarpie, gdy woda porowa znajduje się
pod działaniem sił kapilarnych. Proces odprężenia intensyfikuje się, gdy składowe naprężenia
stycznego zbliżają się do wartości granicznych.
Gliny zalegające powyżej zwierciadła wody w przypadku gdy zachodzi ich zawilgocenie,
zawsze zmniejszają swoje właściwości wytrzymałościowe wskutek odprężenia, rozpuszczania
związków cementujących i utraty napięcia powierzchniowego .
Piaski / żwiry
Praktycznie nie zmieniają swych własności wytrzymałościowych na ścinanie pod wpływem
nawodnienia lub odwodnienia. Natomiast ciśnienie hydrodynamiczne może powodować
zmniejszenie sił tarcia wewnętrznego tych gruntów, co mylnie bywa utożsamiane z
występowaniem kurzawek (tzw. płynny piasek). W istocie tylko niektóre piaski pylaste i pyły
piaszczyste mają sposobność do tworzenia kurzawek.
Obniżenie
wytrzymałości
piasków
może
wystąpić
w
wyniku
sufozji
mechanicznej. Właściwość ta ujawnia się przy wskaźniku różnoziarnistości U > 15÷20,
a równocześnie spadek hydrauliczny wynosi około 0,5÷1,0 a nawet więcej. Takie przypadki
dla skarp są mało prawdopodobne z uwagi na małe gradienty hydrauliczne. Z tego powodu
procesy sufozyjne przy projektowaniu skarp nie muszą być brane pod uwagę. Ograniczone
wymywanie piasków z najdrobniejszymi frakcjami nie przekracza 1 ÷ 2% i nie jest
niebezpieczne dla stateczności skarpy.
Gliny
Podlegają intensywnemu odprężeniu jedynie w pobliżu powierzchni skarp, gdyż siła
odprężenia ujawniająca się w nich nie jest wielka. Odprężenie to powoduje jednakże utratę
spójności i przejście w stan płynny, co w efekcie prowadzi do spływów warstwy o grubości
15÷20 cm już przy kącie nachylenia skarpy 18o÷20o.
Gliny piaszczyste i piaski pylaste
Posiadają swoją specyfikę, gdyż wokół cząsteczek pyłów wykształca się otoczka dipolowo
zorientowanych molekuł silnie związanej wody, co prowadzi do procesów tiksotropowego
zwiększenia wytrzymałości.
Piaski pylaste w odróżnieniu od piasków drobnych po wyschnięciu tworzą lekko spojone
grudki, które po dotknięciu palcem rozsypują się pozostawiając na palcu jasną mączkę.
Przykłady „przeoczeń” geotechnicznych gruntów słabych lub mocnych.
A.! W przypadku posadowień obiektów inżynierskich (mosty, wiadukty itd.) rozpoznaniu
powinno polegać podłoże pod każdą przyszłą podporą. Ograniczenie zakresu badań
prowadzi u dokumentatora dokonanie czynności interpolowania wyników badań
terenowych pomiędzy odległymi otworami, nierzadko nawet o 1000 m !
Źródło: www.inzynieriasrodowiska.com.pl
Jest to niebezpieczne nie tylko w przypadkach posadawiania mostów w sąsiedztwie
cieków wodnych, gdzie zmienność warstw gruntowych jest często znaczna.
Przekonano się o tym projektując, a następnie wykonując podpory palowe w ciągu
obwodnicy Międzyzdrojów. Zaprojektowane pale o max. długości 15 m okazały się
niewystarczające na odcinku 800 m, gdzie nie wykonano wystarczającego
rozpoznania podłoża. Na tym odcinku, rzeczywiste warunki geotechniczne były
odmienne. Do głębokości 40 m ppt zarejestrowano w trakcie wykonawstwa zaleganie
pyłów w stanie miękkoplastycznym. Wymusiło to zatrzymanie prac i przedłużenie pali
– zastosowano pale segmentowe ze złączami stalowymi do ponad 42 m długości.
B.! Odmienny problem napotkano przy budowie autostrady A2.
Pale zaprojektowane jako 12 –metrowe, po zabiciu na ok. 7 m ppt napotkały na opór –
podłoże skalne !!! Podpory osiągnęły wymaganą nośność, ale obcięto blisko połowę
długości z zakontraktowanych pali.
C.! Odrębnym problemem jest wykazywanie gruntów znacząco odmiennych
do
warunków rzeczywistych.
Straty finansowe, problemy organizacyjne, narażanie się na odpowiedzialność w
trakcie kontroli i rozliczania budowy w przypadku dofinansowania ze środków UE,
zatrzymanie budowy, wydłużenie robót o czas potrzebny na podjęcie stosownych
kroków po opracowaniu szeregu opinii, ekspertyz i projektów zamiennych, to tylko
część efektów, która towarzyszy niefrasobliwości i źle pojętej oszczędności.
A przecież w każdym projekcie budowlanym piszemy klauzulę wymaganą art. 20 ust.
4 (P.B.). Narażeni na odpowiedzialność cywilno-prawną i roszczenia z tytułu
gwarancji i rękojmi, projektanci są niejednokrotnie przekonani o swej słuszności.
D.! Częstym przypadkiem jest „niewychwycenie” na odcinku np. 800 – 1000 m !
zalegania starego składowiska odpadów, zamkniętego bez żadnych dokumentacji lub
ewidencji pod koniec lat 70-tych ub. wieku. Zatrzymanie budowy to tylko jeden z
wielu problemów. Obecnie większość miast organizując obwodnicę w swoich
granicach może mieć podobne problemy. W tym miejscu powinno pojawić się pytanie
„kto zezwolił lub wykonał tego typu badania w terenie”?
W przypadku rozmieszczenia otworów co 100 lub 200 m (dla obiektów liniowych) [7]
tego typu przypadki nie wystąpiłyby. W trakcie projektowania byłaby możliwość
zmiany nawet trasy drogi lub ulicy bez narażania się na dodatkowe koszty. Po
zaistnieniu takiego przypadku, pozostaje niezwłocznie rozpoznać głębokość i
rozległość starego składowiska i wykonać badania. Każde rozwiązanie umożliwiające
kontynuowanie robót wiąże się z koniecznością poniesienia dodatkowych kosztów, o
których istnieniu w momencie przekazywania dokumentacji projektowej, zespół
autorski nawet nie wiedział.
Poniżej przedstawiam dwa warianty umożliwiające kontynuowanie robót po
napotkaniu w podłożu starego składowiska.
Źródło: www.inzynieriasrodowiska.com.pl
Rys.3. Schemat wzmocnienia podłoża kolumnami żwirowymi i „poduszką” z geotkaniny
Rys. 4. Schemat wzmocnienia podłoża „poduszką” z geotkaniny
E.! Te same procedury dotyczą problemu ze stwierdzeniem w podłożu gruntów
organicznych.
Raczej trudno wyobrazić sobie, że na odcinku 600 -800 m geotechnik nie wykonuje
wierceń i badań terenowych, skoro w innych miejscach robił to prawidłowo.
W większości przypadków wiąże się to z próbą ominięcia problemów z finansowymi
na czele. Po pierwsze wjazd sprzętem ciężkim na taki teren wiąże się z trudnościami i
stosowaniem, np. materacy drewnianych lub drogami tymczasowymi, a na to nie ma
zgody i funduszy od zlecającego. Po drugie, wykonanie tego typu wierceń w gruntach
bagiennych wiąże się z problemami pobierania próbek gruntów i drogimi badaniami
laboratoryjnymi. Pozostawienie odcinka, np. 800 m w ciągu trasy bez rozpoznania jest
w rozumieniu wielu wykonawców mniejszym złem. W konsekwencji zmartwienie
spada na Inwestora, który przyjął dokumentację do realizacji. Projektowanie przez
ekstrapolację (bo taniej) warunków gruntowych prowadzi do:
Źródło: www.inzynieriasrodowiska.com.pl
•! przechodzenia palami przez nawodnione warstwy lub soczewki i w
konsekwencji otrzymywanie rozluźnionego gruntu w otoczeniu pobocznicy
pala,
•! braku wymaganej nośności podłoża, przyjętej w projekcie,
•! nieuzyskiwania wymaganej nośności podłoża poprzez zastosowanie rozwiązań
przyjętych w projekcie,
•! zatrzymania budowy,
•! zwiększenia kosztów realizacji,
•! sporów pomiędzy stronami.
Podsumowując dotychczasowe zapisy należy wyraźnie podkreślić, że koszty badań
geologicznych powinien ponieść bezpośrednio inwestor, nie zaś wybrany w przetargu
„projektant”.
Takie podejście jest ze wszechmiar korzystne. Inwestor zyskuje najwięcej, ale i o to chodzi.
Zakres rozpoznania geotechnicznego będzie zawsze zgodny z charakterem inwestycji, gdyż
na linii Inwestor – Przedsiębiorstwo geologiczne będzie osiągnięty konsensus co do ilości
robót terenowych i laboratoryjnych poparty doświadczeniem i odpowiedzialnością za
opracowanie bez znamion wadliwości.
2.! Badanie uziarnienia
Badanie uziarnienia (składu granulometrycznego) gruntu polega na określeniu
zawartości poszczególnych frakcji w pobranej próbce.
Badanie uziarnienia gruntów niespoistych wykonuje się metodą sitową, która polega na
przesiewaniu wysuszonego gruntu przez sita o określonych wymiarach oczek i obliczaniu
procentowej zawartości ziarn pozostających na kolejnych sitach, w stosunku do całkowitej
masy badanej próbki.
Dla gruntów spoistych najczęściej stosuje się metodą areometryczną. Metoda ta polega na
określaniu prędkości opadania cząstek gruntowych (o średnicy zastępczej mniejszej
niż 0,06 mm lub 0,074 mm) w wodzie. Podczas badania dokonuje się pomiaru zmiany
gęstości zawiesiny w czasie za pomocą areometru. Za pomocą analizy areometrycznej nie
wyznacza się rzeczywistych wymiarów cząstek gruntu, lecz średnice zastępcze, to jest
średnice kul o tej samej gęstości właściwej szkieletu gruntowego co badany grunt i
opadających w wodzie z tą samą prędkością co cząstki rzeczywiste. Analizie areometrycznej
poddaje się grunty spoiste zawierające nie więcej niż 2,0 % części organicznych.
Wykonanie analizy granulometrycznej pozwala na wykreślenie krzywej uziarnienia, ustalenie
rodzaju i nazwy badanego gruntu.
Znajomość rodzaju badanego gruntu pozwala na prognozowanie jego właściwości oraz
ustalenie zakresu dalszych badań.
Analiza granulometryczna jest jednym z najczęstszych badań w budownictwie. Ze względu
na szerokie możliwości jest wykorzystywana do wielu zagadnień. Na podstawie znajomości
krzywej z badania analizy sitowej lub areometrycznej możemy wnioskować o wielu
Źródło: www.inzynieriasrodowiska.com.pl
wskaźnikach rozstrzygających niejednokrotnie problematyczne sytuacje na budowie lub
podejmować szybkie decyzje.
Rys.5. Krzywe uziarnienia z analizy sitowej.
Wykres uziarnienia jak mało który nomogram, służy do rozwiązywania wielu zadań
praktycznych:
•! umożliwia sklasyfikowanie gruntu,
•! obliczenie współczynników filtracji k10 = cd210 [cm/s]
•! doboru uziarnienia na filtry odwrotne,
•! wyboru najodpowiedniejszego gruntu np. do nasypów
•! podziału gruntu pod względem wysadzinowości (grunty wątpliwe – 20 ÷30 % cząstek
mniejszych od 0,05 mm i 3 ÷ 10 % cząstek mniejszych od 0,002 mm),
•! wskaźnik różnoziarnistości i krzywizny:
-#
./0
.10
23 #
5
.40
.10 6$./0
2.1.! Podział gruntów
Grunty rodzime nieskaliste mineralne, do których zalicza się grunty o zawartości części
organicznych Iom<2,0%, dzieli się biorąc pod uwagę ich uziarnienie na:
•! grunty kamieniste (symbol K) o zawartości ziarn o średnicach większych od 40 mm
stanowiącej więcej niż 50% ( d50 > 40 mm),
Źródło: www.inzynieriasrodowiska.com.pl
•! grunty gruboziarniste o zawartości
ziarn o średnicach mniejszych od 40 mm
stanowiącej więcej niż 50% oraz o zawartości ziarn o średnicach większych od 2 mm
stanowiącej więcej niż 90% ( d50 ≤ 40 mm oraz d90 > 2mm),
•! grunty drobnoziarniste o zawartości ziarn o średnicach mniejszych od 2 mm
stanowiącej więcej niż 90% (d90 ≤ 2 mm).
Do określenia rodzaju gruntów nie skalistych mineralnych potrzebna jest znajomość zakresu
średnic zastępczych charakterystycznych dla poszczególnych frakcji. Poszczególne frakcje
gruntów oraz odpowiadający im zakres średnic zastępczych przedstawiono w tablicy 14.
Tab.14. Zestawienie frakcji gruntów nieskalistych.
Podział gruntów kamienistych ze względu na uziarnienie z jednoczesną ich charakterystyką
przedstawiono w tablicy 15.
Tab.15. Podział gruntów kamienistych.
Źródło: www.inzynieriasrodowiska.com.pl
Podział gruntów niespoistych, (sypkich)
w zależności od ich uziarnienia (składu
granulometrycznego) przedstawiono w tablicach 16 i 17. W tablicy 26 podano natomiast
podział gruntów spoistych ze względu na uziarnienie, co można przedstawić również w
formie graficznej za pomocą trójkąta Fereta (rys.6).
Tab.16. Podział gruntów gruboziarnistych ze względu na uziarnienie
Tab.17. Podział gruntów drobnoziarnistych ze względu na uziarnienie
Źródło: www.inzynieriasrodowiska.com.pl
Tab.18. Podział gruntów spoistych ze względu na uziarnienie
Rys.6. Trójkąt Fereta
Źródło: www.inzynieriasrodowiska.com.pl
2.2.! Uwagi praktyczne
2.2.1. Oznaczanie składu ziarnowego
Uziarnienie gruntów sypkich (niespoistych), z wyjątkiem piasku pylastego, określa się za
pomocą analizy sitowej, natomiast gruntów spoistych – w tym również piasku pylastego - za
pomocą analizy areometrycznej. W niektórych przypadkach stosuje się również analizę
pipetową.
2.2.2. Analiza sitowa
Analiza sitowa polega na wydzieleniu poszczególnych frakcji gruntu za pomocą jego
przesiania przez komplet ośmiu sit. Stosuje się sita o następujących wymiarach oczek
kwadratowych: 25; 10; 2; 1; 0,5; 0,25; 0,10; 0,071 lub 0,063 mm. Dopuszcza się stosowanie
zamiast sit o wymiarach oczek 0,071 i 0,063 mm sit o wymiarach oczek 0,074 oraz 0,06 mm.
Próbki gruntu pobrane do analizy sitowej nie powinny zawierać ziarn o wymiarach większych
niż 40 mm. Stała masa próbek gruntu wysuszonych w temperaturze 105 ÷ 110°C powinna
wynosić:
−! dla piasku drobnego
200 ÷ 250 g,
−! dla piasku średniego
50 ÷ 500 g,
−! dla piasku grubego, pospółki i żwiru 500 ÷ 5000g
Próbkę gruntu przesiewa się przez komplet sit ustawiając je na wstrząsarce którą uruchamia
się na 5 min.
Po obliczeniu procentowej pozostałości Zi ziarn gruntu na poszczególnych sitach wykreśla
się krzywą uziarnienia gruntu, ustala się procentową zawartość ziarn gruntu w
poszczególnych frakcjach (z krzywej uziarnienia) oraz określa się rodzaj gruntu korzystając z
tablic 14 i 15.
Z krzywej uziarnienia możemy odczytać:
•! procentowe zawartości poszczególnych frakcji — pozwoli to na określenie rodzaju i
nazwy badanego gruntu,
•! średnice cząstek d10 i d60 - średnice cząstek, których wraz z mniejszymi w gruncie jest
10% lub 60% (masy) - pozwoli to na określenie Cu (U) - czyli wskaźnika
jednorodności uziarnienia (wskaźnika różnoziarnistości) badanego gruntu.
•! W zależności od wielkości Cu badany grunt możemy zaliczyć do jednej z trzech grup:
•! grunt równoziarnisty
- Cu ≤ 5 (np. piaski wydmowe i lessy),
•! grunt różnoziarnisty
- Cu ≤ 15 (np. gliny holoceńskie),
•! grunt bardzo różnoziarnisty - Cu > 15 (np. pospółki i gliny zwałowe).
Określenie wskaźnika jednorodności uziarnienia może mieć zastosowanie np. do oceny
właściwości filtracyjnych danego gruntu, możliwości jego zagęszczania.
Źródło: www.inzynieriasrodowiska.com.pl
Rys. 7. Przykładowe krzywe uziarnienia
3.! Znaczenie wilgotności optymalnej
Wilgotnością optymalną ( wopt) gruntu nazywamy taką wilgotność, przy której grunt daje się
najbardziej zagęścić. Parametrem decydującym o jakości zagęszczenia gruntu jest w tym
przypadku gęstość objętościowa szkieletu gruntowego ρd.
Zatem wilgotność optymalna to taka wilgotność, przy której gęstość objętościowa szkieletu
gruntowego ρd jest największa i zależy od uziarnienia gruntu. Gęstość objętościowa szkieletu
gruntowego posłużyć może do wyznaczenia innego bardzo ważnego parametru - wskaźnika
zagęszczenia Is , charakteryzującego jakość zagęszczenia gruntu w nasypie. Wskaźnik
zagęszczenia Is to stosunek gęstości objętościowej szkieletu gruntowego w nasypie ρd do
maksymalnej wartości gęstości objętościowej szkieletu gruntowego ρds , uzyskanej w
warunkach laboratoryjnych.
Porównujemy tutaj zagęszczenie gruntu w nasypie do maksymalnego zagęszczenia tego
samego gruntu, uzyskanego w warunkach laboratoryjnych. Wartość Is zbliżona do jedności
świadczy o dobrej jakości zagęszczenia nasypu.
Wilgotność optymalną wopt i maksymalną gęstość objętościową szkieletu gruntowego ρds.
oznacza się w aparacie Proctora, polegających na ubijaniu kilku warstw gruntu w cylindrze
określoną energią. Ważne jest, aby warunki zagęszczenia w aparacie Proctora odpowiadały
warunkom zagęszczania nasypu w skali naturalnej. W tym celu należy wybrać najbardziej
odpowiednią metodę zagęszczania gruntu w laboratorium. Wg normy PN-88/B-04481
przewiduje się cztery metody określania wilgotności optymalnej wopt i maksymalnej gęstości
objętościowej szkieletu gruntowego ρds. Warianty oznaczania tych parametrów przedstawia
tabela 19.
Źródło: www.inzynieriasrodowiska.com.pl
Tabela 19. Metody określania wilgotności optymalnej wg PN-88/B-04481
Rys.8. Schemat aparatu Proctora
Badanie kończy się wykonaniem wykresu z krzywą zagęszczenia gruntu.
Rys. 9. Krzywa zagęszczalności gruntu
Źródło: www.inzynieriasrodowiska.com.pl
4.! O niektórych metodach oceny zagęszczenia podłoża budowlanego
Zastosowanie coraz nowszych materiałów i rozwiązań konstrukcyjnych wymaga
dostosowania metod badawczych, zwłaszcza „in situ”, zapewniających nie tylko szybkość, ale
i jakość pomiarów, także w geotechnice.
W budownictwie liniowym, gdzie oddziaływanie konstrukcji ma stosunkowo mały zasięg
( 2 ÷ 3 m ppt.), główną cechą badaną bezpośrednio w terenie jest zagęszczenie gruntu.
W tym celu określa się wskaźnik zagęszczenia Is oraz wtórny moduł odkształcenia E2.
Zagęszczenie gruntu można też oceniać na podstawie wskaźnika odkształcenia I0. Najczęściej
są stosowane dwie metody pomiarów: statyczna – próbnych obciążeń oraz dynamiczna.
4.1.! Badania statyczne – płyta VSS
Nasyp, stanowiący stabilne podłoże nawierzchni, powinien posiadać odpowiednią nośność i
zagęszczenie. Wymagania w tym zakresie reguluje norma PN-S-02205:1998. Według wyżej
wymienionej normy miarodajne dla oceny jakości nasypu są dwa parametry: w zakresie
zagęszczenia - wskaźnik zagęszczania (Is), a w zakresie nośności - wtórny moduł
odkształcenia (E2) uzyskany z badania płytą VSS. Wartość wskaźnika zagęszczenia (Is) na
powierzchni robót ziemnych nasypów autostradowych powinna wynosić Is = 1,03, zaś
wtórnego modułu odkształcenia (E2) co najmniej 120 MPa.
Ocena zagęszczenia nasypów jest podstawowym badaniem w czasie realizacji inwestycji
drogowych. Tradycyjnie dokonuje się jej na podstawie oceny wskaźnika zagęszczenia Is
otrzymywanego z badania Proctora . Ze względu na specyfikę wykonywania badanie to nie
nadaje się jednak do określenia zagęszczenia gruntów, zawierających w swoim składzie
znaczną ilość frakcji żwirowej. W takim przypadku norma sugeruje stosowanie wartości
wskaźnika odkształcenia (I0) jako zastępczego kryterium oceny wymaganego zagęszczania
nasypów. Wskaźnik odkształcenia (I0) jest uzyskiwany z badania płytą VSS i wyraża się
stosunkiem modułu odkształcenia wtórnego (E2) do pierwotnego (E1). Norma podaje, że dla
piasków, pospółek i żwirów wskaźnik odkształcenia I0 powinien wynosi co najwyżej 2,2.
Oceny zagęszczenia i nośności nasypów z gruboziarnistych kruszyw naturalnych dokonuje się
na podstawie parametrów uzyskiwanych z badania płytą VSS. Zgodnie z normą przy
jednoczesnym spełnieniu obu warunków tzn. E2 ≥ 120 MPa i I0 ≤ 2,2 , nasyp uważa się za
odpowiednio zagęszczony oraz posiadający wystarczającą nośność.
Bardzo często zdarza się, że w wyniku przeoczenia lub braku odpowiedniej staranności, w
wyniku prac terenowych powstaje dokumentacja nieodzwierciedlająca rzeczywistych
warunków gruntowych.
Wówczas również z pomocą przychodzi nam, ale już w trakcie wykonawstwa, metoda VSS.
Tak też stało się w miejscach natrafienia w trakcie robót liniowych na zalegające w podłożu
składowiska odpadów komunalnych.
Pozostawienie tego typu „kwiatków” przyszłym wykonawcom robót niesie straty również dla
Inwestorów nieświadomych tego typu „niespodzianek”.
Źródło: www.inzynieriasrodowiska.com.pl
Z reguły wiąże się to z podjęciem szybkich kroków proceduralnych wobec projektanta i
koniecznością opracowania projektu zamiennego umożliwiającego kontynuację przerwanych
robót na określonym odcinku.
Grunty antropogeniczne, odpady bytowe, wysypy gruzu oraz zaleganie gruntów organicznych
przykrytych warstwami gruntów nawierzchniowych będą stanowiły coraz częstszy obraz na
budowach.
Uzyskiwane wyniki z pomiarów nośności podłoża gruntowego po wykorytowaniu na
słabonośnych odcinkach wymuszają zastosowanie różnych technik wzmocnienia nasypów lub
uzdatnienia podłoży.
Przykłady w tym zakresie można mnożyć w nieskończoność.
Przykład I: odcinek 400 m obwodnicy drogowej z „niespodzianką” na trasie
nowoprojektowanej drogi w postaci starego składowiska odpadów
Tab.20. Pomiary modułów na trasie zalegania odpadów
Źródło: www.inzynieriasrodowiska.com.pl
Rys. 10. Obszar zalegania starego składowiska odpadów
Przykład II:
odcinek ok. 1000 m obwodnicy miejskiej z niezinwentaryzowanym
składowiskiem odpadów komunalnych z lat 70-tych ub. wieku.
Tab. 21. Pomiary modułów płytą VSS i płytą obciążaną dynamicznie
Pomierzone moduły E [MPa]
Wskaźnik odkształcenia I0=E2/E1
Evd
Nr
pktu
E1
E2
wyznaczony
wymagany
MPa
1
A
2
3
B
4
5
C
6
7
D
8
6,07
5,82
14,37
5,69
3,07
16,38
25,28
37,13
28,55
5,79
5,38
5,88
13,06
9,05
25,77
14,28
5,63
32,37
51,34
72,58
64,29
12,98
10,15
11,24
2,15
1,55
1,79
2,50
1,83
1,98
2,03
1,95
2,25
2,24
1,89
1,91
≤ 2,2
≤ 2,2
≤ 2,2
≤ 2,2
≤ 2,2
≤ 2,2
≤ 2,2
≤ 2,2
≤ 2,2
≤ 2,2
≤ 2,2
≤ 2,2
4,1
6,7
14,5
6,9
5,3
20,6
22,5
44,3
24,9
5,4
6,1
6,4
Źródło: www.inzynieriasrodowiska.com.pl
Rys. 11. Trasa drogowa na obszarze składowiska z punktami badawczymi i strefami nośności podłożą
4.1.1. Metodyka badań
Rys.12. Aparat VSS
Badanie płytą!VSS polega na pomiarze odkształceń!pionowych (osiadań) badanej warstwy
pod wpływem nacisku statycznego.
Obciążenia są realizowane skokowo podobnie jak w przypadku badania edometrycznego.
Przyrost obciążeń następuje co 50 kPa aż do osiągnięcia wartości 350 kPa, po czym następuje
Źródło: www.inzynieriasrodowiska.com.pl
odciążanie i ponowne zadawanie obciążeń. Moduły odkształceń dla nasypów wyznacza się
dla zakresu 150 – 250 kPa.
Odkształcenia powstałe w wyniku zadawanych obciążeń są odkształceniami trwałymi,
związanymi z przemieszczeniami cząstek gruntu względem siebie na skutek poślizgu bądź
toczenia oraz kruszeniem i pękaniem ziarn w miejscach styków, oraz sprężystymi
polegającymi na odkształceniach poszczególnych cząstek. Jak wynika z doświadczeń, poślizg
międzycząsteczkowy, powodujący przegrupowanie ziarn w masie gruntowej, wpływa w
największej mierze na całkowite odkształcenia. Sprężysta praca materiału staje się istotna,
gdy na skutek przemieszczeń ziarn (zagęszczania) masa gruntowa nabiera sztywności.
Nieulepszone grunty spoiste, nawet w stanie zwartym, wykazują wtórny moduł odkształcenia,
zazwyczaj poniżej 50 MPa (np. ił mioceński - E2~38 MPa, glina zwałowa - E2~27 MPa,
mada pylasta - E2~14 MPa), przy wskaźniku odkształcenia poniżej 2,0.
Piaski średnie w stanie zagęszczonym (ID~0,7) wykazują wartości wtórnego modułu
odkształcenia z przedziału 78,9 – 112,5 MPa, przy wskaźniku odkształcenia często poniżej
2,2.
Piaski pomimo nawet dobrego zagęszczenia nie posiadają odpowiednio wysokiej nośności.
Pospółki i żwiry, ze względu na znaczną zawartość frakcji żwirowej, osiągają nośność
znacznie wyższą od piasków. Przeprowadzone na przestrzeni ostatnich 10 lat badania płytą
VSS wskazują, że pospółki i żwiry mogą osiągać moduł odkształcenia wtórnego E2 nawet
ponad 200 MPa. Dla tego typu materiałów szczególnie istotnymi cechami są: kształt ziarn
oraz uziarnienie. Wykazano, że dla danego stopnia zagęszczenia moduł odkształcenia
materiału o ziarnach kanciastych będzie mniejszy niż takiego o ziarnach obtoczonych . Ziarna
dobrze obtoczone (szczególnie kuliste) są bowiem znacznie mniej podatne na pękanie i
kruszenie ich krawędzi.
Grunty o nierównomiernym uziarnieniu zagęszczają się znacznie lepiej niż grunty
równomiernie uziarnione, gdyż drobniejsze cząstki wnikają pomiędzy grubsze, wypełniając
wolne przestrzenie
W praktyce okazuje się, że skład petrograficzny żwirów i pospółek staje się bardzo istotny
przy wykonywaniu pomiarów odkształceń płytą VSS. Otoczaki skał krystalicznych oraz
kwarcytów wykazują znaczną kulistość względem dyskoidalnych i wrzecionowatych
otoczaków piaskowcowych. Przyjęcie w normie jednego kryterium wskaźnika odkształcenia
I0 ≤ 2,2 oraz wtórnego modułu odkształcenia E2 ≥ 120 MPa wspólnie dla piasków, pospółek
i żwirów sprawia w praktyce duże trudności wykonawcom robót ziemnych w zakresie
możliwości jednoczesnego dotrzymania wymaganych wartości obu wymienionych
parametrów.
Źródło: www.inzynieriasrodowiska.com.pl
Rys.13. Zależność!wskaźnika odkształcenia (I0) od wtórnego modułu odkształcenia (E2) dla
nasypów z materiału dunajcowego. Obszar czerwony obejmuje wyniki spełniające
kryteria normowe (E2 ≥ 120 MPa i I0 ≤ 2,2).Obszar zielony obejmuje wyniki dla
przyjętych kryteriów (E2 ≥ 145 MPa i I0 ≤ 2,8) [27]
Mechanizm odkształceń! nasypów poddanych obciążeniu jest zagadnieniem złożonym,
zależnym od wielu czynników (rodzaj podłoża, miąższość! nasypu, znaczna zmienność
materiału, nawet w obrębie jednego złoża). Znaczny rozrzut wyników wskaźnika
odkształcenia wskazuje, że zachowanie się! nasypów pod obciążeniem, dla różnych
materiałów, jest zmienne, pomimo że badania wykonywano na nośnym podłożu rodzimym.
Obecnie stosowane przepisy i normy nie dopuszczają! możliwości indywidualnego doboru
wielkości parametrów zagęszczenia i nośności nasypu w zależności od użytego kruszywa i
jego cech jakościowych.
Wydaje się, że celowe byłoby rozważenie dopuszczenia możliwości wyznaczania
określonych parametrów jakości nasypów (np. I0) w odniesieniu do danego materiału. Jest to
szczególnie istotne w przypadku, gdy określony materiał ze względu np. na skład
petrograficzny, kulistość! ziarn lub inne specyficzne cechy odróżnia się! od większości
kruszyw stosowanych w Polsce.
4.2.! Płyty obciążane dynamicznie
Płyta obciążana dynamicznie jest przeznaczona do badania nośności nie związanych warstw
nośnych jako alternatywa lub uzupełnienie badania przyrządem VSS (badanie statyczne).
Płyta dynamiczna spełnia wymogi technicznych przepisów kontrolnych dotyczących badań
gruntu i skał w budownictwie drogowym. Przyrząd ten pozwala na szybkie ustalenie
dynamicznego modułu odkształcenia Evd [MN/m2] wierzchniej warstwy nośnej. Ocenę
nośności można przeprowadzać dla gruntów o wielkości ziaren do 63mm i dynamicznym
Źródło: www.inzynieriasrodowiska.com.pl
module odkształcenia równym Evd 125 MN/m2. Szczególną zaletą płyty dynamicznej jest to,
że w przeciwieństwie do aparatu VSS nie wymaga ona zastosowania statywu i samochodu
ciężarowego jako przeciwwagi. Z tego powodu płytę można stosować w trudniej dostępnych
miejscach, takich jak odwierty, rowy, nasypy. Płyta znajduje zastosowanie w drogownictwie,
kolejnictwie oraz budownictwie sieci kablowych, gazowych, wodno-kanalizacyjnych.
4.2.1. Metodyka badań
Przed przystąpieniem do pomiarów płytę obciążającą należy starannie liczyć na badanej
powierzchni i połączyć z elektronicznym rejestratorem. Prowadnicę z ciężarkiem należy
umieścić centralnie na kuli centrującej płyty. Przed opuszczeniem ciężarka należy podnieść
go na wyznaczoną wysokość i zablokować mechanizmem spustowym znajdującym się w
górnej części prowadnicy. Przed właściwym pomiarem należy wykonać trzy uderzenia
wstępne zapewniające właściwy kontakt płyty z podłożem. Seria pomiarowa składa się z
trzech kolejnych uderzeń. W czasie pomiaru na ekranie wskazywane są poszczególne
amplitudy osiadania w mm. Następnie zostaje obliczona i wyświetlona wartość średnia z
trzech kolejnych pomiarów oraz moduł odkształcenia dynamicznego.
Rys. 14. Widok płyty obciążanej dynamicznie [50]
Źródło: www.inzynieriasrodowiska.com.pl
4.3.! Sondowanie statyczne CPTU
Identyfikacja rodzaju gruntu pod względem uziarnienia zazwyczaj prowadzi do wyboru
miarodajnej cechy wskaźnikowej służącej charakterystyce gruntów z uwagi na ich stan.
W przypadku gruntów niespoistych identyfikatorem stanu jest najczęściej stopień
zagęszczenia, podczas gdy dla gruntów spoistych powszechnie stosuje się! stopień!
plastyczności. Sytuacja niejednoznacznej oceny właściwej cechy wskaźnikowej pojawia się!w
tak zwanych gruntach przejściowych − gruntach o uziarnieniu z pogranicza spoistych i
niespoistych. Do grupy tej doskonale wpisują się! grunty potocznie określane w opisie
makroskopowym jako zaglinione piaski, czy silnie spiaszczone pyły.
Charakterystyczną!cechą!tych gruntów jest to, że z jednej strony wykazują!cechy spoistości, z
drugiej zaś!− są!na tyle mało spoiste, że często nie kwalifikują!się do próby wałeczkowania.
Bardzo niska wartość wskaźnika plastyczności sprawia, że niewielka nawet zmiana
wilgotności gruntu jest przyczyną!dużych niepewności oszacowania stopnia plastyczności w
standardowej procedurze oceny tego parametru. W tej sytuacji quasi-ciągłe badanie in situ, w
którym rejestruje się! zmiany oporów stożka może być z powodzeniem wykorzystane do
określenia stanu konsystencji gruntów spoistych. Warunkiem miarodajnej oceny stopnia
plastyczności na podstawie oporu stożka, szczególnie w przypadku gruntów mało spoistych,
jest uwzględnienie kilku czynników związanych z uziarnieniem i pochodzeniem gruntu,
stanem naprężenia oraz warunkami drenażu. Do oceny tych czynników wykorzystać! można
pozostałe parametry penetracji badania CPTU.
Dokumentacja standardowych badań! geotechnicznych, bazujących na wynikach analizy
makroskopowej i badań laboratoryjnych próbek gruntów pobranych z otworów badawczych,
obejmuje w zakresie ustalenia stanu gruntów spoistych, jakościową! lub ilościową! ocenę!
stopnia plastyczności. Formalnie, w celu ustalenia wartości tego parametru, wystarczy
odnieść!wilgotność!naturalną!gruntu do granic konsystencji, zgodnie z równaniem:
!& #
%7 ' %8 %7 ' %8
#
%& ' $ %8
!8
gdzie:
- wn jest wilgotnością!naturalną!gruntu,
- wL i wp są!granicami konsystencji − odpowiednio granicą płynności i granicą!!!!
!plastyczności, a Ip jest wskaźnikiem plastyczności.
W przypadku gruntów, charakteryzujących się bardzo niską wartością wskaźnika
plastyczności, kłopotliwa może okazać się procedura oznaczenia granicy plastyczności na
podstawie próby wałeczkowania. Zdarza się bowiem, że w celu niedopuszczenia do
zniszczenia wałeczka przed osiągnięciem wymaganej normą średnicy, próbę wałeczkowania
kończy się przedwcześnie, co prowadzi do oznaczenia granicy plastyczności o wartości
większej niż rzeczywista. Skutkiem takiego postępowania jest zazwyczaj niedoszacowanie
wartości wskaźnika i stopnia plastyczności.
Wysokie niepewności pomiarowe związane z wyznaczeniem granicy plastyczności mogą być
wyeliminowane wówczas, gdy standardowe oznaczenia granic Atterberga zastąpi się
badaniem stożkiem opadowym. Wynikiem takiego badania jest określenie wskaźnika
Źródło: www.inzynieriasrodowiska.com.pl
konsystencji − parametru, który zastępuje granice konsystencji w ocenie stopnia
plastyczności.
Najbardziej ogólną! z omawianych, metodą! umożliwiającą! określenie stanu konsystencji
gruntów!spoistych jest metoda bazująca na próbie wałeczkowania,!stosowana powszechnie w
ramach analizy!makroskopowej.
Podstawą, jakościowej oceny stanu konsystencji gruntu jest określenie liczby cykli kulka –
wałeczek w próbie wałeczkowania, do momentu gdy po osiągnięciu przez wałeczek średnicy
3 mm ulega on zniszczeniu.!
O szczególnie niskiej skuteczności tej metody świadczyć!może fakt, że w przypadku gruntów
mało spoistych! pomyłka w wynikach próby o jeden tylko cykl! wałeczkowania zmienia
jakościowo kwalifikację, przesuwając wynik oceny do innego stanu.
W standardowym badaniu sondowania statycznego (CPTU) rejestrowane są w sposób
quasi-ciągły, z przyrostem głębokości sondowania trzy charakterystyki penetracji: opór stożka
– qc, tarcie na tulei ciernej – fs i nadwyżka ciśnienia wody w porach – uc .
Rejestrowane parametry testu wymagają stosowania współczynników korelacyjnych dla
danego terenu i gruntów.
Rys.15. Przykładowe wykresy rejestrowane w badaniu sondowania statycznego CPTU
Istotność! normalizacji tego parametru sondowania ma tym większe znaczenie im niższe są!
mierzone wartości oporów stożka oraz im wyższe są! nadwyżki ciśnienia wody w porach.
Zazwyczaj normalizacja oporu stożka ze względu na wpływ nadwyżki ciśnienia wody w
porach może być!pominięta w gruntach niespoistych.
Źródło: www.inzynieriasrodowiska.com.pl
Rys. 16. Przykład porównania stopnia plastyczności gruntów na podstawie
metody CPTU oraz z badań!laboratoryjnych
Analiza wyników badań!sondowań!statycznych wykazała, że do oceny stopnia plastyczności
gruntów mało spoistych mogą!być!wykorzystane parametry sondowania statycznego.
Niewątpliwą! zaletą! oceny stopnia plastyczności na podstawie metody statycznego
sondowania jest uzyskanie ciągłego rozkładu z głębokością! wyników oszacowania
analizowanej cechy oraz identyfikacja trendu zmian w podłożu stanu konsystencji, z
ewentualnym wskazaniem lokalizacji i zasięgu stref gruntów charakteryzujących się!
uplastycznieniem wywołanym lokalnym kontaktem z woda gruntową"
5.! Interpretacje badań i przekrojów geologiczno-inżynierskich wg normy
PN-86/B-02480 i PN-EN ISO 14688
W normie PN-EN ISO 14688:2006 termin grunty spoiste zastąpiono terminem grunty
drobnoziarniste. Nie używa się stopniujących terminów: konsystencja, stan gruntu tylko
stosuje się jedno pojęcie konsystencja - w polskim tłumaczeniu używane przemiennie
jako stan gruntu. Norma preferuje stosowanie do określenia konsystencji (stanu) wskaźnika
konsystencji, chociaż dopuszcza równoległe stosowanie stopnia plastyczności.
Porównanie klasyfikacji stanów gruntów według ISO i PN przedstawiono w tabeli 21.
Źródło: www.inzynieriasrodowiska.com.pl
W normie ISO wydzielono 5 konsystencji gruntu: bardzo zwartą, zwartą, twardoplastyczną,
plastyczną i miękkoplastyczną. Pominięto konsystencję płynną.
W tabeli 30 przedstawiono propozycję uporządkowania nazw w klasyfikacji gruntów
spoistych do stosowania w Polsce [33]. Bardzo dogodne były dotychczasowe (wg PN-86/B02480) nazwy stanów gruntu: zwarty, półzwarty, twardoplastyczny, plastyczny,
miękkoplastyczny i płynny.
Tab.21. Porównanie klasyfikacji stanów gruntu według PN-86/B-02480 i PN ISO 14688:2006
[33]
Rys.17. Frakcje klasyfikacyjne gruntów wg PN i ISO
Źródło: www.inzynieriasrodowiska.com.pl
5.1.! Wadliwości normy PN-EN ISO 14688 [33]
Grupa A – usterki i nieścisłości ISO
1.! W normie brak jest ogólnej nazwy dla frakcji, obejmującej podfrakcje: kamienie,
głazy i duże głazy, proponuje się nazwać ją frakcją kamienistą.
2.! Wśród rodzajów gruntów organicznych brak jest namułu. W opisie gruntów
organicznych nie podano jednolitych symboli ich oznaczania.
3.! W normie stosowane są równoważnie terminy cząstki i ziarna. Należy zachować
termin ziarna dla frakcji > 0,063 mm, a cząstki dla frakcji ≤ 0,063 mm.
4.! W normie wyróżnia się grunty źle uziarnione, a nie wymienia się gruntów dobrze
uziarnionych. I tak dla piasku (Sa), dla którego odczytano z krzywej uziarnienia
średnice: d60= 0,53 mm, d30= 0,31 mm, dl0= 0,11 mm według wskaźnika
różnoziarnistości ( CU=4,82 < 6) jest gruntem jednofrakcyjnym, a według wskaźnika
krzywizny (Cc = 1,65 - przedział od 1 do 3) należy do gruntów wielofrakcyjnych.
5.! Błędne sformułowanie dotyczy również granicy plastyczności. Grunt osiąga ją wtedy,
gdy „nie daje się wałeczkować, a tylko zlepiać". Powinno być : granicę plastyczności
osiąga grunt, gdy uformowany z niego wałeczek o średnicy 3 mm wykazuje spękania.
6.! Na trójkącie ISO wyróżniono dużo gruntów, które w praktyce raczej nie występują,
np. grSi, grclSi, grCl, grsiCl .
7.! Według trójkąta ISO przymiotnik ilasty pojawia się w nazwie gruntu przy różnej
zawartości frakcji iłowej: w żwirach i piaskach od 3%, a w pyłach od 4%.
8.! Na trójkącie ISO nie ma wyszczególnionych piasków drobnych, średnich i grubych, a
w tekście normy nie ma kryteriów jak je rozpoznać.
Grupa B – błędy i nieścisłości tłumaczenia
Określenie spoistości gruntów dotyczy rodzaju gruntu, a określenie plastyczności — stanu
gruntu. Równoległe stosowanie słowa plastyczność w opisie rodzaju i stanu gruntu
wprowadza niepotrzebne zamieszanie.
Grupa C – błędy i nieścisłości w załączniku krajowym
W załączniku krajowym jest najwięcej błędów. PKN przygotowuje obecnie nową wersję
załącznika. Utrudnione będzie używanie tabeli właściwości fizycznych gruntów podanej w
normie PN-81/B-03020. Aby z niej skorzystać trzeba będzie określić rodzaj gruntu według
aktualnej normy klasyfikacyjnej, tj. PN-86/B-02480 !!!
Źródło: www.inzynieriasrodowiska.com.pl
6. Zakończenie i wnioski.
1.! Przejście na nowe normy europejskie nie eliminuje podstawowych problemów, które
występują w geotechnice i związane są ze specyfikacją właściwości podłoża
gruntowego. Wiarygodność i dokładność dokumentacji geotechnicznych stanowi
podstawę projektowania fundamentów zależy od prawidłowości podziału podłoża
budowlanego na warstwy i przypisania im odpowiednich parametrów gruntowych.
2.! Nowe rodzaje badań polowych (sondowań) pozwalają lepiej, niż to było czynione,
dotychczas wydzielać warstwy gruntu różniące się nie nazwą, ale wartością jego
wytrzymałości mierzonej oporem końcówki sondy, liczbą udarów na 10 czy 30 cm
przelotu sondy, czy cechami jednorodności wykazywanymi w badaniach
geofizycznych.
3.! W nowym „europejskim” systemie dokumentowania geotechnicznego, główna rola
przypada rzeczoznawcy – geotechnikowi, który podając parametry wyprowadzone
odpowiada za ich wartość przeprowadzonymi badaniami, ale i doświadczeniem. Nie
ma obecnie ścisłych procedur, które zezwalałyby wskazywać, jak należy uzyskiwać
parametry geotechniczne. Geotechnik dobiera je odpowiednio do zadania
uwzględniając kategorie geotechniczne, metody obliczeń, rodzaje fundamentów, oraz
zmienność i właściwości gruntów w wydzielonych warstwach.
4.! Metoda projektowania wymiarów fundamentów z wykorzystaniem metod podanych w
projektach nowych norm europejskich nie różni się od dotychczasowych procedur.
Różne są tylko wartości współczynników cząstkowych i zasady superpozycji
uwzględnianych w obliczeniach obciążeń.
5.! Od wejścia PN-EN obliczenia projektowe powinny być wykonywane dwoma
metodami – starą i nową – w celu uzyskania doświadczenia.
6.! Wydzielona dla obiektu kategoria geotechniczna powinna być uwzględniona w
projektowaniu.
7.! Nowe procedury przy wyznaczaniu parametrów opisujących grunty i związana z tym
konieczność wymiany sprzętu badawczego wyeliminują „procedury” oparte na
metodzie B (PN81 –B-03020).
8.! Pomimo, że Eurokody są bardzo cennym źródłem unifikującym rozpoznanie podłoża,
to przy okazji są systemem niepotrzebnie skomplikowanym. Istnieje pogląd o
nieprzystosowaniu Eurokodów do niewielkich i prostych konstrukcji, jak również
dotyczący wręcz zakazu ich stosowania do konstrukcji wysokiego ryzyka.
9.! Stosowanie norm nie zwalnia od odpowiedzialności projektanta.
10.! W przypadku, gdy normy PN-B i BN-B mają szerszy zakres niż odpowiednia część
EC, szczególnie w przypadku określania wartości współczynników bezpieczeństwa
niedopuszczalne jest rygorystyczne trzymanie się zasady, że należy posługiwać się
wyłącznie EC. Przeciwstawne stanowisko jest nie tylko niedopuszczalne, ale może
świadczyć o braku elementarnej wiedzy inżynierskiej w sumie prowadząc do
katastrofalnych następstw.
11.!Wykorzystywanie zaleceń EC7 dotyczących prawidłowości opracowania parametrów
geotechnicznych i kontroli jakości wykonania robót na budowie ma znacznie większe
Źródło: www.inzynieriasrodowiska.com.pl
znaczenie przy spełnianiu stanów granicznych nośności i użytkowania niż dokładność
modeli obliczeniowych i wartości współczynników częściowych.
12.!Generalnie, jak już to zostało zapisane wcześniej, wszystkie błędy biorą się z
nienależytego i niestarannego rozpoznania podłoża. Konsekwencją tego jest również
niedostateczna wiedza projektantów co do
wykorzystywania i interpretacji
parametrów fizyko-mechanicznych gruntów. Niejednokrotnie, wystarczy w takich
sytuacjach zagłębić się w opisy kart informacyjnych Dokumentacji geotechnicznych
lub geologiczno-inżynierskich, aby dojść do wniosku, że prace terenowe prowadzone
były bez stałego dozoru geologicznego, a jedynie pod ogólnym nadzorem
uprawnionego dokumentatora. W praktyce oznacza to m. in. brak fachowej
makroskopowej oceny rodzaju i stanu gruntu. Badania geologiczno-inżynierskie mają
przecież charakter punktowy. Model budowy geologicznej i warunków gruntowych
jest wynikiem interpretacji przebiegu warstw pomiędzy punktami (profilami), w
których wykonano otwory lub sondowania. Niewłaściwie przyjęty stopień złożoności
podłoża może spowodować rozmieszczenie punktów badawczych w większych niż
należałoby odległościach. Pracownicy firm geologicznych mają niestety możliwość
nierzetelnego wykonywania swoich prac, zwłaszcza w terenie, bowiem polskie Prawo
geologiczne i Prawo budowlane w zasadzie nie przewidują żadnej formy nadzoru
zewnętrznego nad realizacją tych prac. Z reguły niewielkie firmy geologiczne pracują
często pod presją czasu, czego zleceniodawcy zdają się nie rozumieć wyznaczając
nierealne, krótkie terminy
13.!Geotechnicy i konstruktorzy (projektanci) muszą zweryfikować swoją wiedzę i
przyzwyczajenia zapominając o „złych nawykach”.
7.! Podsumowanie
Rola i znaczenie badań geotechnicznych jest nie do przecenienia w procesie
inwestycyjnym. Dokumentowanie wyników badań na podstawie odkrywek, szybików,
wykopów, wierceń, dołów próbnych, sond penetracyjnych i sond rdzeniowych oraz badań
laboratoryjnych powinno dać rzeczywisty obraz warunków panujących w podłożu.
Jak wynika z przedstawionych materiałów idea ta mocno odbiega od praktyki codziennej.
Należałoby tylko życzyć, aby błędów, niedomówień lub pominięć było coraz mniej, gdyż w
programowaniu badań in situ uwzględniać należy trzy aspekty:
•! bezpieczeństwo konstrukcji,
•! wykonania i
•! ekonomiki.
Z drugiej strony, operując parametrem gruntu wymaga się od projektanta i wykonawcy robót
znacznej wiedzy w zakresie należytego rozumienia znaczenia tegoż parametru.
W dzisiejszych czasach zarówno geotechnik jak i inżynier konstruktor powinien odpowiednio
posługiwać się parametrami wytrzymałościowymi i odkształceniowymi opisującymi ośrodek
gruntowy.
Źródło: www.inzynieriasrodowiska.com.pl
Bez tej synergii trudno będzie wyeliminować metody oparte na postępowaniu typu U.D.A.
(uda się albo się nie uda)!
Literatura:
1.! PN-EN 1997-1:2004 Eurokod 7 – Projektowanie geotechniczne – Część 1: zasady
ogólne,
2.! PN-EN 1997-2: 2007. Eurokod 7 – Projektowanie geotechniczne – Część 2:
Rozpoznanie i badanie podłoża gruntowego,
3.! PN-EN ISO 14688-1: 2005 Badania geotechniczne. Oznaczanie i klasyfikowanie
gruntów. Część I: Oznaczanie i opis,
4.! PN-EN ISO 14688-2: 2005 Badania geotechniczne. Oznaczanie i klasyfikowanie
gruntów. Część II: Zasady klasyfikowania,
5.! PN-EN ISO 14689-1: Badania geotechniczne. Oznaczanie i klasyfikowanie skał.
Część I: Oznaczanie i opis,
6.! PN-EN-B-04452: 2002. Geotechnika. Badania polowe,
7.! PN-B-02479: Dokumentowanie geotechniczne. Zasady ogólne,
8.! BS 8006:1995 Code of practice for strengthened/reinforced soil and other fills.
9.! PN-81/B-03020 Posadowienia bezpośrednie budowli. Obliczenia statyczne i
projektowanie
10.!PN-83/B-03010 Ściany oporowe. Obliczenia statyczne i projektowanie
11.!Ustawa z 9.06.2011 Prawo geologiczne i górnicze,
12.!Rozp. Min. Środ. z 23.12.2011 w sprawie dokumentacji hydrogeologicznej i
dokumentacji geologiczno-inżynierskiej,
13.!Rozp. MT,B i GM z 25.04.2012 w sprawie ustalania warunków posadawiania
obiektów budowlanych,
14.!Rozp. MTiGM z 02.03.1999 w sprawie warunków technicznych, jakim powinny
odpowiadać drogi publiczne i ich usytuowanie,
15.!Rozp. MI z 12.04.2002 w sprawie warunków technicznych jakim powinny
odpowiadać budynki i ich usytuowanie,
16.!Ustawa Prawo budowlane z dn. 7.07.1994 z późn. zmianami,
17.!Rozp. MI z 06.11.2008 w sprawie szczegółowego zakresu i formy projektu
budowlanego,
18.!Rozp. MI z 23.06.2003 w sprawie informacji dot. bezpieczeństwa i ochrony zdrowia
oraz planu bioz,
19.!Rozp. MI z 02.09.2004 w sprawie szczegółowego zakresu i formy dokumentacji
projektowej, specyfikacji technicznych wykonania i odbioru robót budowlanych oraz
programu funkcjonalno-użytkowego,
20.!Rozp. MT,B i GM z 25.04.2012 w sprawie szczegółowego zakresu i formy projektu
budowlanego,
21.! Obwieszczenie Prezesa Rady Ministrów z 9.10.2000 w sprawie ogłoszenia
jednolitego tekstu ustawy – Kodeks postępowania administracyjnego,
Źródło: www.inzynieriasrodowiska.com.pl
22.!Rozp. Min. Środ. z 20.12.2011 w sprawie szczegółowych wymagań dotyczących
projektów robót geologicznych, w tym robót, których wykonanie wymaga uzyskania
koncesji,
23.!Rozp. Min. Środ. z 16.12.2011 w sprawie kwalifikacji w zakresie geologii,
24.!Rozp. Min. Środ. z 15.12.2011 w sprawie gromadzenia i udostępniania informacji
geologicznej,
25.!Rozp. Min. Środ. z 20.12 2011 w sprawie korzystania z informacji geologicznej za
wynagrodzeniem.
26.!Baguelin F, Jezequel J.F., Shields D. M.:Badania presjometryczne a
fundamentowanie. Wyd. Geologiczne, Warszawa 1984 r.
27.!Bardel T.: Ocena wyników badań płytą VSS kruszywa ze złóż aluwialnych z rejonu
Tarnowa. Górnictwo i geologia, Zeszyt 2, T.2,2012 r.,
28.!Bednarek R.[i in.]: Przewodnik do ćwiczeń laboratoryjnych z mechaniki gruntów.
WBiA, Szczecin 2010 r.,
29.!Biernatowski K. [ i in.] : Fundamentowanie. Projektowanie i wykonawstwo. Tom IPodłoże budowlane. Arkady, Warszawa 1987 r.
30.!Bzówka J. [i in.] : Geotechnika komunikacyjna. Wyd. Pol. Śl., Gliwice 2013r.
31.!Dembicki E.: Fundamentowanie. Tom I. Arkady, Warszawa 1987 r.
32.!Dembicki E., Tejchman A.: Wybrane zagadnienia fundamentowania budowli
hydrotechnicznych. PWN, Warszawa 1981 r.
33.!Gołębiewska A.: Uwagi krytyczne do klasyfikacji gruntów wg Normy PN-EN ISO
14688:2006. Biuletyn PIG Nr 446/2011 r., s. 289-296,
34.!Gołębiewska A., Wudzka A.: Nowa klasyfikacja gruntów według normy PN-EN ISO.
Geoinżynieria 04/2006,
35.!Instrukcja ITB Nr 427/2007 : Warunki techniczne wykonania i odbioru robót
budowlanych.
36.!Instrukcja badań podłoża gruntowego budowli drogowych i mostowych. Cz. 1 i 2
GDDP Warszawa 1998 r.,
37.!Jermołowicz P.: Badania geotechniczne i rozpoznanie podłoża jako podstawa prac
projektowych. Magazyn Autostrady Nr 4/2013, s. 12-16,
38.!Jermołowicz P.: Zakres badań i dokumentacji geotechnicznej dla obiektów
budowlanych w świetle wymagań określonych w Rozp. MTBiGM z dn. 25.04.2012 r.
i Eurokodzie 7-2. (Materiały szkoleniowe) Podkarpacka OIIB, Rzeszów 18.02.2014 r.,
39.!Jermołowicz P.: Awarie w budownictwie. (Materiały szkoleniowe) Świętokrzyska
OIIB, Kielce 20.02.2014 r.,
40.!Kostrzewski W: Mechanika gruntów. PWN, Warszawa 1980 r.,
41.!Kłosiński B.[i in.]: Problemy rozpoznania podłoża gruntowego nowych i
modernizowanych budowli drogowych i mostowych. Mat. II Ogólnopolskie
Sympozjum Kiekrz/Poznań, maj 1998 r.,
42.!Kłosiński B.: Przegląd norm europejskich dotyczących projektowania konstrukcji
geotechnicznych, Geoinżynieria i tunelowanie 02/2005,
43.!Maślakowski M.: O niektórych metodach oceny zagęszczania podłoża budowlanego.
Inżynieria i Budownictwo Nr 7-8/2007, s. 427-429,
Źródło: www.inzynieriasrodowiska.com.pl
44.!Materiały z XXVIII Ogólnopolskich warsztatów pracy projektanta konstrukcji. Wisła
2013 r.
45.!Materiały z XX-XXVI Konferencji Naukowo-technicznych „Awarie budowlane” –
Międzyzdroje,
46.!Młynarek Z., Wierzbicki J.: Nowe możliwości i problemy interpretacyjne polowych
badań gruntów. III Symp. Geologos, Puszczykowo 2007 r.,
47.!Obrycki M., Pisarczyk S.: Zbiór zadań z mechaniki gruntów. Oficyna Wydawnicza
P.W. Warszawa 2007 r.,
48.!Paprocki P., Kada E.: Zmiany w procedurach ustalania geotechnicznych warunków
posadawiania obiektów budowlanych. Inżynier Bud. 02/2013 r.,
49.!Pieczyrak J.: Stany graniczne i warunki obliczeniowe w geotechnice w ujęciu normy
polskiej i europejskiej. Geoinżynieria 04/2009,
50.!Prospekt Merazet – Budownictwo i geodezja 2012 r.,
51.!Rossiński B.: Błędy w rozwiązaniach geotechnicznych. Wyd. Geolog., Warszawa
1978,
52.!Rybak J., Stigler-Szydło E.: Znaczenie i błędy rozpoznania podłoża gruntowego przy
posadowieniach obiektów infrastruktury transportu lądowego. Mag. Nowoczesne Bud.
Inżyn. VII/2010, s. 60-65,
53.!Sahajda K.: O przyczynach i skutkach w geotechnice. Geoinżynieria 04/2005, s. 2024,
54.!Siemińska-Lewandowska A.: Głębokie wykopy. Projektowanie i wykonawstwo.
WKŁ, Warszawa 2011 r.
55.!Szydło A.: Wykorzystywanie Eurokodów geotechnicznych w drogownictwie.
Drogownictwo 11/2010,
56.!Tarnawski M.: Zastosowanie presjometru w badaniach gruntu. PWN, Warszawa 2007,
57.!Tarnawski M.: Geologia inżynierska i geotechnika: koegzystencja czy współpraca.
Mat. z III Sympozjum Geologos. Puszczykowo 2007,
58.!Tarnawski M.: Metody badań podłoża gruntowego na potrzeby budowy dróg. Mat. z
III Sympozjum Geologos. Puszczykowo 2007,
59.!Wiłun Z.: Zarys geotechniki. WKŁ, Warszawa 1982 r.
60.!Wysokiński L.: Błędy systematyczne w rozpoznaniu geotechnicznym i ich wpływ na
projektowanie budowlane. XXIII Konf. Nauk-Techn. „Awarie Budowlane”. Szczecin
2007 ,
61.!Wysokiński L.: Projektowanie geotechniczne. Geoinżynieria 02/2009,
62.!Wysokiński L., Kotlicki W., Godlewski T.: Projektowanie geotechniczne według
Eurokodu 7. Poradnik ITB, Warszawa 2011,
63.!Wytyczne wzmacniania podłoża gruntowego w budownictwie drogowym. IBDiM,
W-wa 2002.
64.!Jaros M., Majer K., Pietrzykowski P.: Wpływ zastosowania normy PN-EN ISO 14688
na dotychczasowy sposób interpretacji przekrojów geologiczno-inżynierskich. Mat. z
III Symp. Geologos, Puszczykowo 2007.
Źródło: www.inzynieriasrodowiska.com.pl
Źródło: www.inzynieriasrodowiska.com.pl