Kompilacja II etapow

Transkrypt

Kompilacja II etapow
Dawno temu na II etapie...
Zadanie 1 (48 OM, II.2). Punkt P leży wewnątrz trójkąta ABC i spełnia warunki ∡P BA = ∡P CA = 31 (∡ABC + ∡ACB).
Udowodnić, że1
AC
AB
=
.
AB + P C
AC + P B
Zadanie 2 (49 OM, II.2). W trójkącie ABC kąt BCA jest rozwarty oraz ∡BAC = 2∡ABC. Prosta przechodząca przez punkt
B i prostopadła do BC przecina prostą AC w punkcie D. Punkt M jest środkiem boku AB. Dowieść, że2 ∡AM C = ∡BM D.
Zadanie 3 (50 OM, II.4). Punkt P leży wewnątrz trójkąta ABC i spełnia warunki ∡P AB = ∡P CA oraz ∡P AC = ∡P BA.
Punkt O jest środkiem okręgu opisanego na trójkącie ABC. Dowieść, że3 jeśli O 6= P , to kąt AP O jest prosty.
Zadanie 4 (51 OM, II.4). Punkt I jest środkiem okręgu wpisanego w trójkąt ABC, w którym AB 6= AC. Proste BI i
CI przecinają boki AC i AB odpowiednio w punktach D i E. Wyznaczyć4 wszystkie miary kąta BAC, dla których może
zachodzić DI = EI.
Zadanie 5 (52 OM, II.5). Punkt I jest środkiem okręgu wpisanego w trójkąt ABC. Prosta AI przecina bok BC w punkcie
D. Dowieść, że5 AI + CD = AC wtedy i tylko wtedy, gdy ∡B = 60◦ + 31 ∡C.
Zadanie 6 (53 OM, II.5). Trójkąt ABC, w którym ∡A = 90◦ jest podstawą ostrosłupa ABCD. Ponadto zachodzą równości
AD = BD oraz AB = CD. Udowodnić, że6 ∡ACD ­ 30◦ .
Zadanie 7 (54 OM, II.5). Punkt A leży na zewnątrz okręgu o o środku O. Z punktu A poprowadzono dwie proste styczne
do okręgu o odpowiednio w punktach B i C. Pewna styczna do okręgu o przecina odcinki AB i AC odpowiednio w punktach
E i F . Proste OE i OF przecinają odcinek BC odpowiednio w punktach P i Q. Udowodnić, że7 z odcinków BP , P Q i QC
można zbudować trójkąt podobny do trójkąta AEF .
Zadanie 8 (55 OM, II.5). Punkty D i E leżą odpowiednio na bokach BC i CA trójkąta ABC, przy czym BD = AE.
Odcinki AD i BE przecinają się w punkcie P . Dwusieczna kąta ACB przecina odcinki AD i BE odpowiednio w punktach
Q i R. Wykazać, że8
PR
PQ
=
.
AD
BE
Zadanie 9 (56 OM, II.5). Dany jest romb ABCD, w którym ∡BAD > 60◦ . Punkty E i F leżą odpowiednio na bokach AB
i AD, przy czym ∡ECF = ∡ABD. Proste CE i CF przecinają przekątną BD odpowiednio w punktach P i Q. Wykazać,
że9 :
PQ
AB
=
.
EF
BD
Zadanie 10 (57 OM, II.5). Punkt C jest środkiem odcinka AB. Okrąg o1 przechodzący przez punkty A i C przecina okrąg
o2 przechodzacy przez punkty B i C w różnych punktach C i D. Punkt P jest środkiem tego łuku AD okręgu o1 , który nie
zawiera punktu C. Punkt Q jest środkiem tego łuku BD okręgu o2 , który nie zawiera punktu C. Dowieść, że10 proste P Q i
CD są prostopadłe.
1 Wskazówka.
2 Wskazówka.
3 Wskazówka.
4 Wskazówka.
5 Wskazówka.
6 Wskazówka.
7 Wskazówka.
8 Wskazówka.
9 Wskazówka.
10 Wskazówka.
Przedłuż BP do AC i CP do AB. Wykaż, że P K = CK oraz P L = BL.
Poprowadź prostą równoległą do AB przez punkt C.
Przedłuż proste AP , BP , CP do okręgu (ABC) dostając punkty K, L, M . Proste CL, AK, M B są równoległe.
Twierdzenie sinusów i dwa przypadki.
Znaleźć punkt E na AC, że AI = AE.
Uzupełnić ABC do prostokąta. „Nierówność trójkąta” pomiędzy kątami przy wierzchołku C.
Wystarczy rozważyć punkt styczności EF z okręgiem i trójkąt sam się znajduje.
Zrzutować wszystko na prostą prostopadłą do dwusiecznej kąta ACB.
Pokazać, że punkty A, P, Q, E, F leżą na jednym okręgu.
Wziąć punkt E na CD→ , że CE = AC.
Już nie tak dawno temu na II etapie...
Zadanie 11 (58 OM, II.5). Czworokąt wypukły ABCD, w którym AB 6= CD jest wpisany w okrąg. Czworokąty AKDL i
CM BN są rombami o bokach długości a. Dowieść, że11 punkty K, L, M, N leżą na jednym okręgu.
Zadanie 12 (60 OM, II.4). Odcinek AB jest średnicą okręgu o opisanego na czworokącie wypukłym ABCD, którego
przekątne przecinają się w punkcie E. Proste styczne do okręgu w punktach C i D przecinają się w punkcie P . Udowodnić,
że12 P C = P E.
Zadanie 13 (62 OM, II.2). Dany jest czworokąt wypukły ABCD, w którym AB < BC oraz AD < CD. Punkty P i Q leżą
odpowiednio na bokach BC i CD, przy czym P B = AB oraz QD = AD. Punkt M jest środkiem odcinka P Q. Wykazać,
że13 jeśli kąt BM D jest prosty, to na czworokącie ABCD można opisać okrąg.
Zadanie 14 (63 OM, II.2). Dany jest trójkąt ABC, w którym ∡CAB = 60◦ oraz AB 6= AC. Punkt O jest środkiem okręgu
opisanego na tym trójkącie, a punkt I – środkiem okręgu wpisanego w ten trójkąt. Wykazać, że14 symetralna odcinka AI,
prosta OI oraz prosta BC przecinają się w jednym punkcie.
Zadanie 15 (64 OM, II.2). Okręgi o1 i o2 o środkach odpowiednio w punktach O1 i O2 przecinają się w dwóch różnych
punktach A i B, przy czym kąt O1 AO2 jest rozwarty. Prosta O1 B przecina okrąg o2 w punkcie C różnym od B, a prosta
O2 B przecina okrąg o1 w punkcie D różnym od B. Wykazać, że15 punkt B jest środkiem okręgu wpisanego w trójkąt ACD.
Zadanie 16 (65 OM, II.5). Okręgi o1 i o2 , styczne do pewnej prostej odpowiednio w punktach A i B, przecinają się w
punktach X i Y , przy czym punkt X leży bliżej prostej AB niż punkt Y . Prosta AX przecina okrąg o2 w punkcie P różnym
od X. Styczna do okręgu o2 w punkcie P przecina prostą AB w punkcie Q. Wykazać, że16 ∡XY B = ∡BY Q.
Zadanie 17 (IMO #2012, 5). Niech ABC bęzie trójkątem, w którym ∡BCA = 90◦ oraz niech D będzie spodkiem wysokości
z punktu C. Niech X będzie punktem we wnętrzu odcinka CD. Niech K będzie takim punktem na odcinku AX, że BK = BC.
Podobnie niech L będzie punktem na odcinku BX, że AL = AC. Niech M będzie punktem przecięcia AL oraz BK. Wykaż,
ze M K = M L.
Wskazówka:
11 Wskazówka.
12 Wskazówka.
13 Wskazówka.
14 Wskazówka.
15 Wskazówka.
16 Wskazówka.
Środek tego okręgu to punkt przecięcia prostych AD i BC.
Niech Q będzie punktem przecięcia prostych AD i CB. Pokazać, ze P to środek odcinka QE.
Niech S będzie punktem symetrycznym do P względem prostej BM . Wówczas czworokąt ABSD to deltoid.
Rozważyć odbicie symetryczne punktu I względem prostej BC. Jak można wówczas przeformułować tezę zadania?
Punkty A, O1 , O2 , C, D leżą na jednym okręgu.
Punkty A, Y, P, Q leżą na jednym okręgu.