We.P.P35 - 23rd International Conference on Spectral Line Shapes

Transkrypt

We.P.P35 - 23rd International Conference on Spectral Line Shapes
Multispectrum-fitting of phenomenological collisional line-shape
models to a speed-dependent Blackmore profile for spectroscopic
analysis and databases
P Wcisło1, D Lisak1, R Ciuryło1, A S Pine2
1 Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University,
-Grudziadzka 5, 87-100 Toruń, Poland
2 Alpine Technologies, 14401 Poplar Hill Road, Germantown, Maryland 20874 USA
A variety of phenomenological line-shape models [1-9] are compared with a speed-dependent Blackmore
profile [10-12] describing an O2 spectral line measured earlier with a very high signal-to-noise ratio,
S/N > 105 [13,14]. In this reference Blackmore profile (SDh B12 P), the speed-dependence of the selfbroadening and shifting is given by a hypergeometric function characterized by an isotropic long-range
attractive r−5 interaction potential, and the velocity-changing collision operator is calculated from a
corresponding short-range r−12 repulsion. Simultaneous fitting [15,16] of the phenomenological models
to the Blackmore profile simulated at 15 pressures from 5 to 800 Torr provides model parameters, linear
in pressure, with correlation reduced from single-spectrum fits. None of these fitting models are able to
reproduce the reference spectra to within a S/N greater than 6 × 104 . The quality of fit [13], based on
the peak intensity divided by the residuals, indicate which models are adequate for analysis of spectra
measured with a given S/N . The model dependence or systematic deviations of the fitting parameters is
seen to be much larger than their least-squares statistical standard deviations. The model differences of
the common parameters, such as line position, intensity and broadening, usually are inversely related to
the quality of fit, but not always. These differences indicate the possible magnitude of systemic errors
caused by oversimplified treatment of velocity-changing collisions. The application of these results to
spectral analysis, improved databases [17], atmospheric remote sensing [18], trace gas metrology [19],
and Doppler thermometry is discussed [20].
References:
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
Galatry L 1961 Phys. Rev. 122 1218
Nelkin M and Ghatak A 1964 Phys. Rev. 135 p A4
Rautian S G and Sobelman I I 1966 Usp. Fiz. Nauk. 90 209 [Rautian S G and Sobelman I I 1967
Sov. Phys. Usp. 9 701]
Berman P R 1972 J. Quant. Spectrosc. Radiat. Transfer 12 1331
Pine A S 1999 J. Quant. Spectrosc. Radiat. Transf. 62 397
Robert D, Joubert P, Lance B 2000 J. Mol. Struct. 517-518 393
Priem D, Rohart F, Colmont J M, Wlodarczak G, Bouanich J P 2000 J. Mol. Struct. 517-518 435
Ciuryło R, Pine A S, Szudy J 2001 J. Quant. Spectrosc. Radiat. Transf. 68 257
Ngo N H, Lisak D, Tran H, Hartmann J-M 2013 J. Quant. Spectrosc. Radiat. Transf. 129 89
Blackmore R 1987 J. Chem. Phys. 87 791
Ciuryło R, Shapiro D A, Drummond J R, May A D 2002 Phys. Rev. A 65 012502
Wcisło P, Ciuryło R 2013 J. Quant. Spectrosc. Radiat. Transfer 120 36
Cygan A, Lisak D, Wójtewicz S, Domysławska J, Hodges J T, Trawiński R S, Ciuryło R 2012
Phys Rev A 85 022508
Wcisło P, Cygan A, Lisak D, Ciuryło R 2013 Phys. Rev. A 88 012517
Benner D C,R insland C P, Devi V M, Smith M A H, Atkins D 1995 J. Quant. Spectrosc. Radiat.
Transf. 53 705
Pine A S, Ciuryło R 2001 J. Mol. Spectrosc. 208 180
Hill C, Gordon I E, Rothman L S, Tennyson J 2013 J. Quant. Spectrosc. Radiat. Transf. 130 51
Miller C E, Brown L R, Toth R A, Benner D C, Devi V M 2005 C.R. Phys 6 876
Hashiguchia K, Lisak D, Cygan A, Ciuryło R, Abe H 2013 Sens. Actuators A 241 152
Gianfrani L 2016 Phil. Trans. R. Soc. A 374 20150047

Podobne dokumenty