on the approximate variational measure

Transkrypt

on the approximate variational measure
Strona główna
Strona tytułowa
ON THE APPROXIMATE VARIATIONAL
MEASURE
Piotr Sworowski
Casimirus the Great University
Bydgoszcz, Poland
Spis treści
JJ
II
J
I
Strona 1 z 41
Powrót
Sugar Cane Symposium in Real Analysis XXXVII
São Carlos, 3–6.06.2013
Pełny ekran
Zamknij
Koniec
Strona główna
SOME DEFINITIONS
Strona tytułowa
Spis treści
By a tagged interval we mean a pair (I, x), where x ∈ I ⊂ R.
JJ
II
J
I
By a division in an interval [a, b] we mean a finite collection {(Ii, xi)}ki=1 of tagged
intervals, where intervals Ii therein are pairwise nonoverlapping.
A division in [a, b] is called a partition of [a, b] if
k
[
Ii = [a, b].
Strona 2 z 41
i=1
Powrót
Having a function δ : R → (0, ∞), called a gauge, we say that a division
{(Ii, xi)}ki=1 is δ-fine if for each i,
Pełny ekran
Ii ⊂ (xi − δ(xi), xi + δ(xi)).
Zamknij
We say a division {(Ii, xi)}ki=1 is anchored in a set E ⊂ R if xi ∈ E for each i.
Koniec
Strona główna
SOME DEFINITIONS
Strona tytułowa
Spis treści
By a tagged interval we mean a pair (I, x), where x ∈ I ⊂ R.
JJ
II
J
I
By a division in an interval [a, b] we mean a finite collection {(Ii, xi)}ki=1 of tagged
intervals, where intervals Ii therein are pairwise nonoverlapping.
A division in [a, b] is called a partition of [a, b] if
k
[
Ii = [a, b].
Strona 3 z 41
i=1
Powrót
Having a function δ : R → (0, ∞), called a gauge, we say that a division
{(Ii, xi)}ki=1 is δ-fine if for each i,
Pełny ekran
Ii ⊂ (xi − δ(xi), xi + δ(xi)).
Zamknij
We say a division {(Ii, xi)}ki=1 is anchored in a set E ⊂ R if xi ∈ E for each i.
Koniec
Strona główna
SOME DEFINITIONS
Strona tytułowa
Spis treści
By a tagged interval we mean a pair (I, x), where x ∈ I ⊂ R.
JJ
II
J
I
By a division in an interval [a, b] we mean a finite collection {(Ii, xi)}ki=1 of tagged
intervals, where intervals Ii therein are pairwise nonoverlapping.
A division in [a, b] is called a partition of [a, b] if
k
[
Ii = [a, b].
Strona 4 z 41
i=1
Powrót
Having a function δ : R → (0, ∞), called a gauge, we say that a division
{(Ii, xi)}ki=1 is δ-fine if for each i,
Pełny ekran
Ii ⊂ (xi − δ(xi), xi + δ(xi)).
Zamknij
We say a division {(Ii, xi)}ki=1 is anchored in a set E ⊂ R if xi ∈ E for each i.
Koniec
Strona główna
SOME DEFINITIONS
Strona tytułowa
Spis treści
By a tagged interval we mean a pair (I, x), where x ∈ I ⊂ R.
JJ
II
J
I
By a division in an interval [a, b] we mean a finite collection {(Ii, xi)}ki=1 of tagged
intervals, where intervals Ii therein are pairwise nonoverlapping.
A division in [a, b] is called a partition of [a, b] if
k
[
Ii = [a, b].
Strona 5 z 41
i=1
Powrót
Having a function δ : R → (0, ∞), called a gauge, we say that a division
{(Ii, xi)}ki=1 is δ-fine if for each i,
Pełny ekran
Ii ⊂ (xi − δ(xi), xi + δ(xi)).
Zamknij
We say a division {(Ii, xi)}ki=1 is anchored in a set E ⊂ R if xi ∈ E for each i.
Koniec
Strona główna
SOME DEFINITIONS
Strona tytułowa
Spis treści
By a tagged interval we mean a pair (I, x), where x ∈ I ⊂ R.
JJ
II
J
I
By a division in an interval [a, b] we mean a finite collection {(Ii, xi)}ki=1 of tagged
intervals, where intervals Ii therein are pairwise nonoverlapping.
A division in [a, b] is called a partition of [a, b] if
k
[
Ii = [a, b].
Strona 6 z 41
i=1
Powrót
Having a function δ : R → (0, ∞), called a gauge, we say that a division
{(Ii, xi)}ki=1 is δ-fine if for each i,
Pełny ekran
Ii ⊂ (xi − δ(xi), xi + δ(xi)).
Zamknij
We say a division {(Ii, xi)}ki=1 is anchored in a set E ⊂ R if xi ∈ E for each i.
Koniec
Strona główna
KURZWEIL–HENSTOCK INTEGRAL
Strona tytułowa
Spis treści
DEFINITION.
Kurzweil 1957 & Henstock
R b 1960
We call a function f : [a, b] → R, H-integrable, with the integral I = (H) a f ∈ R,
if for each ε > 0 there exists a gauge δ, such that for every δ-fine partition
{(Ii, xi)}ki=1 of [a, b],
k
X
f (xi)|Ii| − I < ε.
i=1
JJ
II
J
I
Strona 7 z 41
Set the indefinite integral of f :
Powrót
Z
F (x) = (H)
x
f,
a
x ∈ [a, b].
Pełny ekran
How to characterize F ?
Zamknij
Koniec
Strona główna
KURZWEIL–HENSTOCK INTEGRAL
Strona tytułowa
Spis treści
DEFINITION.
Kurzweil 1957 & Henstock
R b 1960
We call a function f : [a, b] → R, H-integrable, with the integral I = (H) a f ∈ R,
if for each ε > 0 there exists a gauge δ, such that for every δ-fine partition
{(Ii, xi)}ki=1 of [a, b],
k
X
f (xi)|Ii| − I < ε.
i=1
JJ
II
J
I
Strona 8 z 41
Set the indefinite integral of f :
Powrót
Z
F (x) = (H)
x
f,
a
x ∈ [a, b].
Pełny ekran
How to characterize F ?
Zamknij
Koniec
Strona główna
VARIATIONAL MEASURE
Strona tytułowa
Spis treści
Let F : [a, b] → R.
By |E|F we mean the variational measure of E ⊂ [a, b] induced by F ; i.e.,
|E|F = inf sup
δ
P
k
X
|∆F (Ii)|,
JJ
II
J
I
i=1
where sup runs over all δ-fine divisions {(Ii, xi)}ki=1 anchored in E.
Strona 9 z 41
The function F is said to be SL (after Strong Lusin Condition) if | · |F is absolutely
continuous; i.e.,
|E|F = 0 for every (Lebesgue) nullset E ⊂ [a, b].
Powrót
Pełny ekran
Zamknij
Koniec
Strona główna
VARIATIONAL MEASURE
Strona tytułowa
Spis treści
Let F : [a, b] → R.
By |E|F we mean the variational measure of E ⊂ [a, b] induced by F ; i.e.,
|E|F = inf sup
δ
P
k
X
|∆F (Ii)|,
JJ
II
J
I
i=1
where sup runs over all δ-fine divisions {(Ii, xi)}ki=1 anchored in E.
Strona 10 z 41
The function F is said to be SL (after Strong Lusin Condition) if | · |F is absolutely
continuous; i.e.,
|E|F = 0 for every (Lebesgue) nullset E ⊂ [a, b].
Powrót
Pełny ekran
Zamknij
Koniec
Strona główna
Strona tytułowa
A CHARACTERIZATION OF H-INTEGRAL
Spis treści
THEOREM. Ene 1994, Bongiorno & Di Piazza & Skvortsov 1995.
Let F : [a, b] → R, F (a) = 0. TAE:
❶ F is an indefinite Kurzweil–Henstock integral (of F 0 ),
JJ
II
J
I
❷ F is SL.
Strona 11 z 41
Key steps of the proof:
Powrót
• notice that | · |F is absolutely continuous on each set
{x ∈ [a, b] : F 0(x) exists and F 0(x) ≤ n},
n ∈ N;
Pełny ekran
so it’s enough to prove
• | · |F is absolutely continuous =⇒ F is almost everywhere differentiable.
Zamknij
Koniec
Strona główna
Strona tytułowa
A CHARACTERIZATION OF H-INTEGRAL
Spis treści
THEOREM. Ene 1994, Bongiorno & Di Piazza & Skvortsov 1995.
Let F : [a, b] → R, F (a) = 0. TAE:
❶ F is an indefinite Kurzweil–Henstock integral (of F 0 ),
JJ
II
J
I
❷ F is SL.
Strona 12 z 41
Key steps of the proof:
Powrót
• notice that | · |F is absolutely continuous on each set
{x ∈ [a, b] : F 0(x) exists and F 0(x) ≤ n},
n ∈ N;
Pełny ekran
so it’s enough to prove
• | · |F is absolutely continuous =⇒ F is almost everywhere differentiable.
Zamknij
Koniec
Strona główna
Strona tytułowa
A CHARACTERIZATION OF H-INTEGRAL
Spis treści
THEOREM. Ene 1994, Bongiorno & Di Piazza & Skvortsov 1995.
Let F : [a, b] → R, F (a) = 0. TAE:
❶ F is an indefinite Kurzweil–Henstock integral (of F 0 ),
JJ
II
J
I
❷ F is SL.
Strona 13 z 41
Key steps of the proof:
Powrót
• notice that | · |F is absolutely continuous on each set
{x ∈ [a, b] : F 0(x) exists and F 0(x) ≤ n},
n ∈ N;
Pełny ekran
so it’s enough to prove
• | · |F is absolutely continuous =⇒ F is almost everywhere differentiable.
Zamknij
Koniec
Strona główna
Strona tytułowa
LEMMA.
Bongiorno & Di Piazza & Skvortsov 1995.
| · |F is absolutely continuous =⇒ F is VBG∗, so almost everywhere differentiable.
Spis treści
A function F : [a, b] → R is said to be VBG∗ if [a, b] =
each n,
k
X
ωF (Ii) < Mn
S∞
n=1
En, where, for
JJ
II
J
I
i=1
for any collection {Ii}ki=1 of nonoverlapping intervals with both endpoints in En.
Strona 14 z 41
Powrót
LEMMA.
Every VBG∗-function is almost everywhere differentiable.
Lusin ?
FACT. An F : [a, b] → R is VBG∗-function iff | · |F is σ-finite on a co-countable
subset of [a, b].
Pełny ekran
Zamknij
Koniec
Strona główna
Strona tytułowa
LEMMA.
Bongiorno & Di Piazza & Skvortsov 1995.
F is SL =⇒ F is VBG∗, so almost everywhere differentiable.
Spis treści
A function F : [a, b] → R is said to be VBG∗ if [a, b] =
each n,
k
X
ωF (Ii) < Mn
S∞
n=1
En, where, for
JJ
II
J
I
i=1
for any collection {Ii}ki=1 of nonoverlapping intervals with both endpoints in En.
Strona 15 z 41
Powrót
LEMMA.
Every VBG∗-function is almost everywhere differentiable.
Lusin ?
FACT. An F : [a, b] → R is VBG∗-function iff | · |F is σ-finite on a co-countable
subset of [a, b].
Pełny ekran
Zamknij
Koniec
Strona główna
Strona tytułowa
LEMMA.
Bongiorno & Di Piazza & Skvortsov 1995.
F is SL =⇒ F is VBG∗, so almost everywhere differentiable.
Spis treści
A function F : [a, b] → R is said to be VBG∗ if [a, b] =
each n,
k
X
ωF (Ii) < Mn
S∞
n=1
En, where, for
JJ
II
J
I
i=1
for any collection {Ii}ki=1 of nonoverlapping intervals with both endpoints in En.
Strona 16 z 41
Powrót
LEMMA.
Every VBG∗-function is almost everywhere differentiable.
Lusin ?
FACT. An F : [a, b] → R is VBG∗-function iff | · |F is σ-finite on a co-countable
subset of [a, b].
Pełny ekran
Zamknij
Koniec
Strona główna
Strona tytułowa
APPROXIMATE KURZWEIL–HENSTOCK INTEGRAL
Spis treści
Let S ⊂ R. We say a tagged interval ([y, z], x) is S-fine if y, z ∈ S.
Let C = {Sx : x ∈ R} be a collection of sets. We say a division
C-fine if for each i, (Ii, xi) is Sxi -fine.
{(Ii, xi)}ki=1
JJ
II
J
I
is
Strona 17 z 41
Let a set A ⊂ R be measurable, x ∈ R. The density of A at x is, if it exists, the
value
|A ∩ [x − h, x + h]|
d(A, x) = lim
.
h→0
2h
Let ∆(x), x ∈ R, be the collection of measurable sets E ⊂ R with d(E, x) = 1.
Powrót
Pełny ekran
Zamknij
Koniec
Strona główna
Strona tytułowa
APPROXIMATE KURZWEIL–HENSTOCK INTEGRAL
Spis treści
Let S ⊂ R. We say a tagged interval ([y, z], x) is S-fine if y, z ∈ S.
Let C = {Sx : x ∈ R} be a collection of sets. We say a division
C-fine if for each i, (Ii, xi) is Sxi -fine.
{(Ii, xi)}ki=1
JJ
II
J
I
is
Strona 18 z 41
Let a set A ⊂ R be measurable, x ∈ R. The density of A at x is, if it exists, the
value
|A ∩ [x − h, x + h]|
d(A, x) = lim
.
h→0
2h
Let ∆(x), x ∈ R, be the collection of measurable sets E ⊂ R with d(E, x) = 1.
Powrót
Pełny ekran
Zamknij
Koniec
Strona główna
Strona tytułowa
FACT.
Russell Gordon 1990?
For any collection C = {Sx ∈ ∆(x) : x ∈ R}, there is a C-fine partition of any
[a, b] ⊂ R.
DEFINITION.
Gordon 1990
We call a function f : [a, b] → R, AH-integrable, with the integral I =
Rb
(AH) a f ∈ R, if for each ε > 0 there exists a collection C = {Sx ∈ ∆(x) :
x ∈ R}, such that for every C-fine partition {(Ii, xi)}ki=1 of [a, b],
k
X
f (xi)|Ii| − I < ε.
i=1
Z
F (x) = (AH)
Spis treści
JJ
II
J
I
Strona 19 z 41
Powrót
Pełny ekran
x
f
a
How to characterize F ?
Zamknij
Koniec
Strona główna
Strona tytułowa
FACT.
Russell Gordon 1990?
For any collection C = {Sx ∈ ∆(x) : x ∈ R}, there is a C-fine partition of any
[a, b] ⊂ R.
DEFINITION.
Gordon 1990
We call a function f : [a, b] → R, AH-integrable, with the integral I =
Rb
(AH) a f ∈ R, if for each ε > 0 there exists a collection C = {Sx ∈ ∆(x) :
x ∈ R}, such that for every C-fine partition {(Ii, xi)}ki=1 of [a, b],
k
X
f (xi)|Ii| − I < ε.
i=1
Z
F (x) = (AH)
Spis treści
JJ
II
J
I
Strona 20 z 41
Powrót
Pełny ekran
x
f
a
How to characterize F ?
Zamknij
Koniec
APPROXIMATE VARIATIONAL MEASURE
Strona główna
Strona tytułowa
Let F : [a, b] → R.
Spis treści
|E|ap
F stands for the approximate variational measure of E ⊂ [a, b] induced by F :
|E|ap
F = inf sup
C
P
k
X
|∆F (Ii)|,
JJ
II
J
I
i=1
where sup runs over all C-fine divisions P = {(Ii, xi)}ki=1 anchored in E, inf over
all collections C = {Sx ∈ ∆(x) : x ∈ R}.
Strona 21 z 41
Powrót
We say F is ASL (after Approximate Strong Lusin Condition) if |E|ap
F = 0 for
every nullset E ⊂ [a, b].
Pełny ekran
Zamknij
Koniec
APPROXIMATE VARIATIONAL MEASURE
Strona główna
Strona tytułowa
Let F : [a, b] → R.
Spis treści
|E|ap
F stands for the approximate variational measure of E ⊂ [a, b] induced by F :
|E|ap
F = inf sup
C
P
k
X
|∆F (Ii)|,
JJ
II
J
I
i=1
where sup runs over all C-fine divisions P = {(Ii, xi)}ki=1 anchored in E, inf over
all collections C = {Sx ∈ ∆(x) : x ∈ R}.
Strona 22 z 41
Powrót
We say F is ASL (after Approximate Strong Lusin Condition) if |E|ap
F = 0 for
every nullset E ⊂ [a, b].
Pełny ekran
Zamknij
Koniec
Strona główna
Strona tytułowa
APPROXIMATE VARIATIONAL MEASURE
Spis treści
Ene 1998
THEOREM.
Let F : [a, b] → R. TAE:
0
❶ F is an indefinite AH-integral (of its approximate derivative Fap
),
JJ
II
J
I
❷ F is ASL.
Strona 23 z 41
Key steps of the proof:
• notice that
| · |ap
F
Powrót
is absolutely continuous on each set
0
{x ∈ [a, b] : F 0(x) exists and Fap
(x) ≤ n},
n ∈ N;
Pełny ekran
so it’s enough to prove
• | · |ap
F is absolutely continuous =⇒ F is almost everywhere approximately differentiable.
Zamknij
Koniec
Strona główna
Strona tytułowa
APPROXIMATE VARIATIONAL MEASURE
Spis treści
Ene 1998
THEOREM.
Let F : [a, b] → R. TAE:
0
❶ F is an indefinite AH-integral (of its approximate derivative Fap
),
JJ
II
J
I
❷ F is ASL.
Strona 24 z 41
Key steps of the proof:
• notice that
| · |ap
F
Powrót
is absolutely continuous on each set
0
{x ∈ [a, b] : F 0(x) exists and Fap
(x) ≤ n},
n ∈ N;
Pełny ekran
so it’s enough to prove
• | · |ap
F is absolutely continuous =⇒ F is almost everywhere approximately differentiable.
Zamknij
Koniec
Strona główna
Strona tytułowa
APPROXIMATE VARIATIONAL MEASURE AND VBG
Spis treści
To this aim, one proves
• F is ASL implies F is measurable;
JJ
II
J
I
• F is ASL =⇒ F has VBG property on each nullset;
• LEMMA.
Ene 1998
A measurable F is VBG iff it is VBG on every Lebesgue nullset E ⊂ [a, b].
• LEMMA.
Denjoy–Khintchine 1916
A measurable VBG function is a.e. approximately differentiable.
Strona 25 z 41
Powrót
A function F : [a, b] → R is said to be VBG if [a, b] =
S∞
n=1
En, where, for each n,
Pełny ekran
k
X
∆F (Ii) < Mn
i=1
Zamknij
for any collection {Ii}ki=1 of nonoverlapping intervals with both endpoints in En.
Koniec
Strona główna
Strona tytułowa
APPROXIMATE VARIATIONAL MEASURE AND VBG
Spis treści
To this aim, one proves
• F is ASL implies F is measurable;
JJ
II
J
I
• F is ASL =⇒ F has VBG property on each nullset;
• LEMMA.
Ene 1998
A measurable F is VBG iff it is VBG on every Lebesgue nullset E ⊂ [a, b].
• LEMMA.
Denjoy–Khintchine 1916
A measurable VBG function is a.e. approximately differentiable.
Strona 26 z 41
Powrót
A function F : [a, b] → R is said to be VBG if [a, b] =
S∞
n=1
En, where, for each n,
Pełny ekran
k
X
∆F (Ii) < Mn
i=1
Zamknij
for any collection {Ii}ki=1 of nonoverlapping intervals with both endpoints in En.
Koniec
Strona główna
Strona tytułowa
APPROXIMATE VARIATIONAL MEASURE AND VBG
Spis treści
To this aim, one proves
• F is ASL implies F is measurable;
JJ
II
J
I
• F is ASL =⇒ F has VBG property on each nullset;
• LEMMA.
Ene 1998
A measurable F is VBG iff it is VBG on every Lebesgue nullset E ⊂ [a, b].
• LEMMA.
Denjoy–Khintchine 1916
A measurable VBG function is a.e. approximately differentiable.
Strona 27 z 41
Powrót
A function F : [a, b] → R is said to be VBG if [a, b] =
S∞
n=1
En, where, for each n,
Pełny ekran
k
X
∆F (Ii) < Mn
i=1
Zamknij
for any collection {Ii}ki=1 of nonoverlapping intervals with both endpoints in En.
Koniec
Strona główna
Strona tytułowa
APPROXIMATE VARIATIONAL MEASURE AND VBG
Spis treści
To this aim, one proves
• F is ASL implies F is measurable;
JJ
II
J
I
• F is ASL =⇒ F has VBG property on each nullset;
• LEMMA.
Ene 1998
A measurable F is VBG iff it is VBG on every Lebesgue nullset E ⊂ [a, b].
• LEMMA.
Denjoy–Khintchine 1916
A measurable VBG function is a.e. approximately differentiable.
Strona 28 z 41
Powrót
A function F : [a, b] → R is said to be VBG if [a, b] =
S∞
n=1
En, where, for each n,
Pełny ekran
k
X
∆F (Ii) < Mn
i=1
Zamknij
for any collection {Ii}ki=1 of nonoverlapping intervals with both endpoints in En.
Koniec
Strona główna
Strona tytułowa
APPROXIMATE VARIATIONAL MEASURE AND VBG
Spis treści
To this aim, one proves
• F is ASL implies F is measurable;
JJ
II
J
I
• F is ASL =⇒ F has VBG property on each nullset;
• LEMMA.
Ene 1998
A measurable F is VBG iff it is VBG on every Lebesgue nullset E ⊂ [a, b].
• LEMMA.
Denjoy–Khintchine 1916
A measurable VBG function is a.e. approximately differentiable.
Strona 29 z 41
Powrót
A function F : [a, b] → R is said to be VBG if [a, b] =
S∞
n=1
En, where, for each n,
Pełny ekran
k
X
∆F (Ii) < Mn
i=1
Zamknij
for any collection {Ii}ki=1 of nonoverlapping intervals with both endpoints in En.
Koniec
Strona główna
PROOF OF ENE’S LEMMA
V.A.Skvortsov & PS
Strona tytułowa
Spis treści
Take P = [a, b] \
∞
S
En, |P | = 0, En = cl En, F En – continuous.
n=1
F ∈
/ VBG[a, b] implies F ∈
/ VBG(En) for some n.
D — the set of all x ∈ En such that F is VBG on no I ∩ En, I 3 x an open
interval.
JJ
II
J
I
Strona 30 z 41
Powrót
D0 — co-countable subset of D without unilaterally isolated points
Pełny ekran
Zamknij
Koniec
Strona główna
(1)
Pick I1 , . . . , Im(1)1 , m1 ≥ 2, with endpoints in D0, so that
Strona tytułowa
m1
X
∆F Ii(1) ≥ 1.
Spis treści
i=1
0
In D ∩
Sm1
(1)
I
i
i=1
pick intervals
(2)
I1 , . . . , Im(2)2
JJ
II
J
I
0
with endpoints in D , so that
(1)
(2)
① each of Ii , i = 1, . . . , m1 , contains at least two of Ij , j = 1, . . . , m2 ,
(1)
(2)
② both endpoints of every Ii , i = 1, . . . , m1 , are endpoints of some Ij , j =
1, . . . , m2;
m2
X
(2) 1
Ii < ;
③
2
i=1
④ for every i = 1, . . . , m1 ,
Strona 31 z 41
Powrót
X
∆F Ij(2) ≥ 2.
(2)
(2)
j:Ij ⊂Ii
Pełny ekran
And so on. With a category argument one can show that on the nullset
N =D∩
mk
∞ [
\
Zamknij
(k)
Ii
k=1 i=1
F is not VBG.
Koniec
Strona główna
(1)
Pick I1 , . . . , Im(1)1 , m1 ≥ 2, with endpoints in D0, so that
Strona tytułowa
m1
X
∆F Ii(1) ≥ 1.
Spis treści
i=1
0
In D ∩
Sm1
(1)
I
i
i=1
pick intervals
(2)
I1 , . . . , Im(2)2
JJ
II
J
I
0
with endpoints in D , so that
(1)
(2)
① each of Ii , i = 1, . . . , m1 , contains at least two of Ij , j = 1, . . . , m2 ,
(1)
(2)
② both endpoints of every Ii , i = 1, . . . , m1 , are endpoints of some Ij , j =
1, . . . , m2;
m2
X
(2) 1
Ii < ;
③
2
i=1
④ for every i = 1, . . . , m1 ,
Strona 32 z 41
Powrót
X
∆F Ij(2) ≥ 2.
(2)
(2)
j:Ij ⊂Ii
Pełny ekran
And so on. With a category argument one can show that on the nullset
N =D∩
mk
∞ [
\
Zamknij
(k)
Ii
k=1 i=1
F is not VBG.
Koniec
Strona główna
(1)
Pick I1 , . . . , Im(1)1 , m1 ≥ 2, with endpoints in D0, so that
Strona tytułowa
m1
X
∆F Ii(1) ≥ 1.
Spis treści
i=1
0
In D ∩
Sm1
(1)
I
i
i=1
pick intervals
(2)
I1 , . . . , Im(2)2
JJ
II
J
I
0
with endpoints in D , so that
(1)
(2)
① each of Ii , i = 1, . . . , m1 , contains at least two of Ij , j = 1, . . . , m2 ,
(1)
(2)
② both endpoints of every Ii , i = 1, . . . , m1 , are endpoints of some Ij , j =
1, . . . , m2;
m2
X
(2) 1
Ii < ;
③
2
i=1
④ for every i = 1, . . . , m1 ,
Strona 33 z 41
Powrót
X
∆F Ij(2) ≥ 2.
(2)
(2)
j:Ij ⊂Ii
Pełny ekran
And so on. With a category argument one can show that on the nullset
N =D∩
mk
∞ [
\
Zamknij
(k)
Ii
k=1 i=1
F is not VBG.
Koniec
Strona główna
MEASURABILITY IS ESSENTIAL
VAS & PS
Strona tytułowa
Spis treści
[0, 1] = {pα }α<Ω
JJ
II
J
I
{Gα }α<Ω — all Gδ null subsets of [0, 1]
Put H0 = G0 and for each α < Ω take an α̃ < Ω such that
[
Gα̃ ⊃
Hβ ∪ Gα
Strona 34 z 41
β<α
and
Gα̃ \
[
Powrót
Hβ
is uncountable.
(1)
β<α
Pełny ekran
Define Hα = Gα̃ .
Zamknij
Koniec
Strona główna
MEASURABILITY IS ESSENTIAL
VAS & PS
Strona tytułowa
Spis treści
[0, 1] = {pα }α<Ω
JJ
II
J
I
{Gα }α<Ω — all Gδ null subsets of [0, 1]
Put H0 = G0 and for each α < Ω take an α̃ < Ω such that
[
Gα̃ ⊃
Hβ ∪ Gα
Strona 35 z 41
β<α
and
Gα̃ \
[
Powrót
Hβ
is uncountable.
(2)
β<α
Pełny ekran
Define Hα = Gα̃ .
Zamknij
Koniec
Strona główna
Strona tytułowa
{Hα }α<Ω is ascending,
[
α<Ω
[
Hα =
Gα = [0, 1].
α<Ω
Put
F (x) = pα at x ∈ Hα \
Spis treści
[
JJ
II
J
I
Hβ .
β<α
F is VBG on each nullset D ⊂ [0, 1]:
D ⊂ Gα ⊂ Hα for some α < Ω. Thus F (D) ⊂ {pβ }β6α .
Strona 36 z 41
Powrót
Due to (2), F takes upon each x ∈ [0, 1] as a value uncountably many times.
Pełny ekran
Zamknij
Koniec
Strona główna
Strona tytułowa
{Hα }α<Ω is ascending,
[
α<Ω
[
Hα =
Gα = [0, 1].
α<Ω
Put
F (x) = pα at x ∈ Hα \
Spis treści
[
JJ
II
J
I
Hβ .
β<α
F is VBG on each nullset D ⊂ [0, 1]:
D ⊂ Gα ⊂ Hα for some α < Ω. Thus F (D) ⊂ {pβ }β6α .
Strona 37 z 41
Powrót
Due to (2), F takes upon each x ∈ [0, 1] as a value uncountably many times.
Pełny ekran
Zamknij
Koniec
Strona główna
Suppose [0, 1] =
∞
[
En and F is VB on each En.
Strona tytułowa
n=1
In = {pα : En ∩ F −1(pα ) is infinite}, n ∈ N.
|In| > 0 for some n, since [0, 1] =
∞
[
In
Spis treści
JJ
II
J
I
n=1
Consider the indicatrix function I of F En. By the Banach indicatrix theorem,
Z∞
I 6 V (F En) < ∞.
Strona 38 z 41
−∞
On the other hand, I(y) = ∞ for each y ∈ In, whence
Powrót
Z∞
I > ∞ · |In| = ∞,
Pełny ekran
−∞
a contradiction.
Zamknij
Koniec
Strona główna
Suppose [0, 1] =
∞
[
En and F is VB on each En.
Strona tytułowa
n=1
In = {pα : En ∩ F −1(pα ) is infinite}, n ∈ N.
|In| > 0 for some n, since [0, 1] =
∞
[
In
Spis treści
JJ
II
J
I
n=1
Consider the indicatrix function I of F En. By the Banach indicatrix theorem,
Z∞
I 6 V (F En) < ∞.
Strona 39 z 41
−∞
On the other hand, I(y) = ∞ for each y ∈ In, whence
Powrót
Z∞
I > ∞ · |In| = ∞,
Pełny ekran
−∞
a contradiction.
Zamknij
Koniec
Strona główna
SOME GENERALIZATIONS RELATED TO MEASURABILITY
Strona tytułowa
Extra assumptions on {∆(x)}x∈R:
Spis treści
❶ if S ∈ ∆(x) then there exists a measurable set R ⊂ S such that
d(R, x) > 0;
❷ if S ∈ ∆(x) and d(R, x) = 1, R 3 x, then
JJ
II
J
I
S ∩ R ∈ ∆(x).
Strona 40 z 41
THEOREM.
VAS & PS 2012
∆
Let F : [a, b] → R. Assume | · |F is σ-finite on each nullset. Then F : R → R is
measurable.
THEOREM.
VAS & PS 2002
ap
If F : R → R is measurable, then | · |F is σ-finite on each nullset implies it
is σ-finite on [a, b]. In turn this implies F is almost everywhere approximately
differentiable.
COROLLARY.
VAS & PS 2012
∆ap
ap
Assume VF is σ-finite on each nullset. Then VF is σ-finite and F is approximately differentiable a.e.
Powrót
Pełny ekran
Zamknij
Koniec
Strona główna
SOME GENERALIZATIONS RELATED TO MEASURABILITY
Strona tytułowa
Extra assumptions on {∆(x)}x∈R:
Spis treści
❶ if S ∈ ∆(x) then there exists a measurable set R ⊂ S such that
d(R, x) > 0;
❷ if S ∈ ∆(x) and d(R, x) = 1, R 3 x, then
JJ
II
J
I
S ∩ R ∈ ∆(x).
Strona 41 z 41
THEOREM.
VAS & PS 2012
∆
Let F : [a, b] → R. Assume | · |F is σ-finite on each nullset. Then F : R → R is
measurable.
THEOREM.
VAS & PS 2002
ap
If F : R → R is measurable, then | · |F is σ-finite on each nullset implies it
is σ-finite on [a, b]. In turn this implies F is almost everywhere approximately
differentiable.
COROLLARY.
VAS & PS 2012
∆ap
ap
Assume VF is σ-finite on each nullset. Then VF is σ-finite and F is approximately differentiable a.e.
Powrót
Pełny ekran
Zamknij
Koniec

Podobne dokumenty