Release date 24.01.2010 By KayGeeFx (

Transkrypt

Release date 24.01.2010 By KayGeeFx (
Release date 24.01.2010
By KayGeeFx ([email protected])
SYMULATOR POJAZDÓW SZYNOWYCH
Styczeń 2010
www.eu07.pl
SYMULATOR POJAZDÓW SZYNOWYCH
www.eu07.pl
Spis treści
1.
2.
3.
4.
5.
6.
7.
8.
Budowa kinematyczna pantografu w symulatorze
Pantograf EU07 303e.t3d/303e.mmd jako pantograf wzorcowy
Umieszczanie pantografów na pojeździe
Istotne zasady podczas budowy nowych pantografów
Definiowanie pantografów w pliku .mmd poprzez „pantfactors”
Parametry określające rozmieszczenie wzdłużne pantografów na pojeździe
Parametr określający położenie ślizgu w stanie złożonym pantografu
Parametr korygujący położenie ślizgu podczas pracy pantografu
Budowa pantografów i ich umieszczanie na pojazdach trakcyjnych
Strona
1
SYMULATOR POJAZDÓW SZYNOWYCH
1.
www.eu07.pl
Budowa kinematyczna pantografu w symulatorze
Wzorzec pantografu w symulatorze został określony dla odbieraka nożycowego typu AKP. Do
symulacji posłużyło pięć pivotów, które to tworzą siatkę kinematyczną pantografu naśladując połączenia
pomiędzy poszczególnymi przegubami odbieraka. Ich rozmieszczenie jest ze sobą ściśle powiązane.
Symulator odpowiednio transformuje położenie trzech pivotów (B, C i D) i obrót czterech z nich (A, B, D i E).
Warto zauważyć, że ramiona dolne i górne obracają się o różne kąty. Poniżej rysunek przedstawia układ
kinematyczny symulujący pantograf. Kółeczkami oznaczono pivoty. Pivoty ramion to punkty A, B, D i E,
natomiast pivot ślizgu to punkt C.
Rys 1. Schemat kinematyczny pantografu.
2.
Pantograf EU07 303e.t3d/303e.mmd jako pantograf wzorcowy
Fundamentalnym założeniem wyjściowym przy rozmieszczaniu pantografów na pojazdach
trakcyjnych oraz tworzeniu nowych pantografów jest to, że wzorcowym pantografem (czyli pantografem dla
którego skalibrowano kąty obrotu ramion górnych i dolnych, a co za tym idzie położenie ślizgu) jest odbierak
zastosowany w modelu EU07 303e.t3d/303.mmd. Dalej będę ten odbierak nazywał pantografem
wzorcowym. Poniżej przedstawiony jest schemat poglądowy z rozmieszczeniem pivotów dla pantografu z
wspomnianego modelu. I tak dla tego pojazdu pivoty obrotu ramion dolnych umieszczone są na wysokości
około 4,035 m (jest to tak jakby wysokość na jakiej znajduje się pantograf). Położenie pivotu ślizgu w stanie
złożonym w osi Z wynosi około 4,25 m. Obie z wymienionych wartości mierzone są od z=0 wzdłuż osi
pionowej pojazdu trakcyjnego. W modelu tym powierzchnia ślizgu niemalże pokrywa się z pivotem ślizgu
(można przyjąć, że są na tej samej wysokości, ponieważ różnica w odległości ma wartość mniejszą niż 1
mm). Odpowiednie odległości pomiędzy pivotami pozwalają na poprawną pracę pantografu, czyli
odpowiednie wychylenia jego ślizgu. Założenie odnośnie pantografu wzorcowego jest niezbędne do
wyznaczenia parametrów dla pantfactors w pliku .mmd podczas umieszczania na pojeździe trakcyjnym
tradycyjnego pantografu dostępnego w symulatorze lub przy tworzeniu i umieszczaniu nowego pantografu.
Rys 2. Rozmieszczenie pivotów pantografu wzorcowego.
Budowa pantografów i ich umieszczanie na pojazdach trakcyjnych
Strona
2
SYMULATOR POJAZDÓW SZYNOWYCH
3.
www.eu07.pl
Umieszczanie pantografów na pojeździe
Pantograf zastosowany w modelu 303e.t3d/303e.mmd unosi się odpowiednio w zależności od
wysokości na jakiej znajduje się sieć trakcyjna nad nim, a konkretniej przewód jezdny. Pantograf ten można
wykorzystać w innych pojazdach trakcyjnych, lecz należy pamiętać dla jakiego położenia został on
zaprojektowany. Pamiętajmy, że oryginalnie przy wyznaczaniu parametrów kinematycznych znajdował się on
na pojeździe EU07 na wysokości około 4,035 m (wysokość tą mierzymy od główki szyny do pivotów ramion
dolnych). Przypuśćmy, że chcemy go zastosować w innej lokomotywie. Wysokość, na jakiej będziemy mogli
go zamontować wyniesie 4,1 m. A więc ustawiamy w modelu .t3d pantograf na tej wysokości. Pantograf
oczywiście będzie działał, lecz niestety błędnie. Jego ślizg zawsze będzie się unosił wyżej o pewną stałą
wartość. Wartość tę możemy wyznaczyć odejmując wysokość zamontowania pantografu wzorcowego od
wysokości zamontowania naszego pantografu. A więc w tym przypadku nasz pantograf będzie się unosił o
4,1 - 4,035 = 0,065 m wyżej niż powinien. Co teraz… można by zapytać. Jest na to rada. Trzeba skorygować
zakres działania pantografu o odpowiednią wartość. Ta wartość to nasze wyliczone 0,065m. Korekcję tą
przeprowadzamy ustawiając odpowiednio czwarty parametr pantfactors w pliku .mmd. Podobnie
postępujemy w przypadkach, gdy umieszczany przez nas pantograf znajdzie się poniżej poziomu, na którym
umieszczony jest pantograf wzorcowy. W takim przypadku parametr korekcyjny dla pantfactors przyjmie
wartość ujemną (poprzednio była ona dodatnia). Dodatkowo w pliku .mmd musimy odpowiednio zwiększyć
lub zmniejszyć trzeci parametr pantfactors. Zmiany tej dokonujemy oczywiście o naszą wyliczoną różnicę w
położeniu pionowym pantografów. Dla zwiększenia wysokości zamontowania dodajemy wyliczoną wartość, a
dla zmniejszenia odejmujemy. Poniżej przedstawiono jak zmiana położenia pantografu wpływa na położenie
jego ślizgu (zakres pracy pantografu bez korekcji parametrów pantfactors w pliku .mmd). Dodatkowe
informacje o korekcji położenia ślizgu w rozdziałach 7 i 8.
Rys 3. Położenia ślizgu w zależności od wysokości umiejscowienia pantografu w modelu (bez korekcji).
4.
Istotne zasady podczas budowy nowych pantografów
Tutaj wymienione zostają spostrzeżenia ujmujące, co jest ważne przy tworzeniu nowego pantografu.
Aby nowo tworzony odbierak działał poprawnie pod względem kinematycznym w symulatorze (tzn. nie
oddalał się od przewodu jezdnego do góry lub w dół podczas jazdy przy zmianie wysokości na jakiej znajduje
się przewód jezdny) musi być spełniony zasadniczy warunek. A mianowicie, powinny być zachowane
położenia pivotów względem siebie wzdłuż osi Y i Z. Pozwoli to na zachowanie tych samych długości ramion
dolnych i górny oraz kątów początkowych ich położenia, co ma wpływ na dynamikę ślizgu podczas pracy
pantografu. Położenia pivotów mogą lekko odbiegać od tych, jakie są w pantografie wzorcowym, lecz wtedy
musimy odległość w osi Z pomiędzy pivotami dolnych ramion, a pivotem ślizgu (czyli tak jakby wysokość
pantografu w stanie złożonym) zachować w takiej samej lub zbliżonej wartości jak w pantografie wzorcowym
(około 0,215 m). Wtedy nowo tworzony pantograf będzie przyzwoicie pracował podczas jazdy ze zmienną
wysokością zawieszenia przewodu jezdnego. Nadmienię, że skalowanie układu kinematycznego pantografów
na mniejszych bądź większych rozmiarów może przynieść w efekcie niepoprawną pracę pantografu. Wystąpić
może wtedy podczas ruchu pojazdu oddalanie się ślizgu od przewodu jezdnego.
Budowa pantografów i ich umieszczanie na pojazdach trakcyjnych
Strona
3
SYMULATOR POJAZDÓW SZYNOWYCH
5.
www.eu07.pl
Definiowanie pantografów w pliku .mmd poprzez „pantfactors”
W pliku .mmd pojazdu trakcyjnego definiujemy cztery parametry przypisane do operatora
pantfactors. Przykładowy kod przedstawiono poniżej. Wpis ten jest odpowiedzialny za określenie warunków
pracy pantografu poprzez podanie odpowiednich wartości liczbowych. Od parametrów operatora pantfactors
zależy poprawna praca pantografu. Muszą one zostać podane w sposób przemyślany i zgodny z konstrukcją i
położeniem pantografu w modelu. Parametry te w głównej mierze określają zakres pracy pantografu i jego
reakcje na zmianę wysokości zawieszenia przewodu jezdnego. Szczegółowy opis parametrow operatora
pantfactors w dalszych punktach.
models: 303e.t3d
animwheelprefix: wheel0
animpantrd1prefix: ramiedolne1_pant0
animpantrd2prefix: ramiedolne2_pant0
animpantrg1prefix: ramiegorne1_pant0
animpantrg2prefix: ramiegorne2_pant0
animpantslprefix: slizg_pant0
pantfactors: -3.35 3.35 4.429 0
endmodels
Rys 4. Przykładowy fragment kodu z pliku .mmd z wpisem ujmującym definicję pantfactors.
6.
Parametry określające rozmieszczenie wzdłużne pantografów na pojeździe
W definicji pantfactors dwa pierwsze parametry odpowiadają za wzdłużne rozmieszczenie
pantografów na pojeździe. Dzięki nim symulator wie z jakim wyprzedzeniem lub opóźnieniem ma zmienić
wysokość na jakiej znajduje się ślizg. I tak pierwszy parametr oznacza położenie pierwszego pantografu
wzdłuż osi Y pojazdu trakcyjnego. Położenie to mierzymy od środka pojazdu (czyli od y=0) do osi pracy
ślizgu pantografu w kierunku ujemnym osi Y. Zaś drugi parametr to położenie drugiego pantografu wzdłuż
osi Y pojazdu trakcyjnego. Położenie dla tego odbieraka mierzymy analogicznie jak wyżej, lecz w przeciwnym
kierunku, czyli w stronę dodatnią osi Y.
7.
Parametr określający położenie ślizgu w stanie złożonym pantografu
Trzecim parametrem dla operatora pantfactors jest parametr określający położenie powierzchni
pracy ślizgu w stanie, gdy pantograf jest złożony. Położenie to mierzymy na osi Z względem pionowej
współrzędnej toru (tej jaką definiujemy dla obiektu track w definicji toru w scenerii). Można tę wielkość ująć
jako sumę czterech wartości: R+W+P+S, gdzie R jest wysokością szyny (przyjęto dla innych obliczeń w
symulatorze 0,18 m i wszystko wskazuje, że tutaj jest tak samo), W jest wysokością w układzie
współrzędnych pojazdu trakcyjnego na jakiej został umieszczony pantograf (mierzona od główki szyny czyli
od zera na osi Z modelu do pivotów ramion dolnych pantografu), P jest odległością mierzoną w pionie od
pivotów ramion dolnych pantografu do pivotu ślizgu w stanie złożonym, a S jest odległością pomiędzy
pivotem ślizgu a jego powierzchnią pracy. Nadmienię tu, że P dla pantografu wzorcowego wynosi 0. Wynika
to z tego, że pivot ślizgu pokrywa się w jego przypadku z powierzchnią pracy ślizgu. Przykładowo dla
pantografu wzorcowego trzeci parametr pantfactors wyniesie 0,18 + 4,035 + 0,215 + 0 = 4,43 m (wartości
2, 3 oraz wynik przybliżone).
8.
Parametr korygujący położenie ślizgu podczas pracy pantografu
Parametru tego używa się w przypadku, gdy zabudowa pantografu występuje na wysokości innej niż
jest zabudowany pantograf wzorcowy (4,035 m). W przypadku pantografu wzorcowego korekcja położenia
ślizgu wynosi zero. Jest to oczywiste gdyż to dla niego właśnie skalibrowano wielkości, które określają
Budowa pantografów i ich umieszczanie na pojazdach trakcyjnych
Strona
4
SYMULATOR POJAZDÓW SZYNOWYCH
www.eu07.pl
położenie ramion i ślizgu. Należy zwrócić uwagę, na fakt, że gdy ten sam pantograf wzorcowy z EU07
303e.t3d/303e.mmd umieścimy na innej wysokości to ślizg uniesie się o tyle wyżej lub niżej o ile wyżej lub
niżej umieściliśmy cały pantograf. A więc, aby pracował on w prawidłowym zakresie, czyli by nie unosił się
za wysoko lub za nisko musimy w pliku .mmd pojazdu trakcyjnego określić odpowiednio czwarty parametr
dla operatora pantfactors. Wartość tę obliczamy odejmując wysokość na jakiej jest położony pantograf
wzorcowy a od wysokości na jakiej umieściliśmy nasz pantograf. Wartość tę można również przedstawić jako
odległość w pionie pomiędzy odpowiednimi pivotami obu pantografów tej samej konstrukcji lub typu. Przy
umieszczeniu pantografu wyżej niż pantograf wzorcowy parametr czwarty pantfactors przyjmuje wartości
dodatnie, natomiast w przypadku obniżenia względem wzorcowego położenia przyjmuje on wartości ujemne.
Wartość czwarta pantfactors pozwala skorygować dodatkowo położenie ślizgu podczas pracy ze względu na
różne położenie jego powierzchni pracy względem pivotu położenia ślizgu. W pantografie wzorcowym, jak na
początku wspomniałem, powierzchnia ślizgu pokrywa się z pivotem położenia ślizgu. W praktyce podczas
konstruowania pantografu (np. połówkowego) pivot ślizgu pantografu jest umieszczony niżej niż
powierzchnia robocza ślizgu. A więc podczas pracy pantograf będzie się unosił za wysoko o tyle o ile niżej w
stosunku do powierzchni pracy ślizgu jest umieszczony jego pivot. Z pomocą przychodzi nam pantfactors:
gdzie tę różnicę wpisujemy jako czwarty parametr dla tego operatora (jako wartość bezwzględną). Ogólnie
można powiedzieć, że na parametr czwarty pantfactors składają się dwie wielkości i można ją ująć wzorem:
K+S, gdzie K to korekcja ze względu na położenie pantografu w pionie, a S to korekcja ze względu na
odległość powierzchni pracy ślizgu od jego pivotu. Przykładowo dla pantografu umieszczonego na wysokości
3,95 m i odległości pomiędzy pivotem ślizgu a jego powierzchnią pracy wynoszącą 0,1 m czwarty parametr
pantfactors wyniesie 3,95 - 4,035 + 0,1 = 0,015 m.
Na koniec chciałbym podkreślić, że są to moje wolne rozważania w tym temacie. Nadmienię, że
konstruowany przeze mnie pantograf połówkowy przy powyższej metodzie rozumowania zachowuje się
podczas pracy testowej bez zastrzeżeń.
Wiadomości zawarte w tym dokumencie mogą się różnić od moich wypowiedzi na forum, ze względu na
pewne uproszczenia myślowe podczas pisania postów i potraktowanie tematu na gorąco. Zawarte tutaj
informacje są na pewno bardziej przemyślane. Ujednolicono pewne zagadnienia eliminując dwuznaczności i
fragmenty tekstu mogące brzmieć jako niedomówienia.
Pozdrawiam i dziękuję wszystkim, którzy pomogli mi na forum rozwikłać tematu pantografów.
KayGeeFx ([email protected])
Budowa pantografów i ich umieszczanie na pojazdach trakcyjnych
Strona
5