- Instytut Mechaniki Górotworu PAN

Transkrypt

- Instytut Mechaniki Górotworu PAN
25
Prace Instytutu Mechaniki Górotworu PAN
Tom 8, nr 1-4, (2006), s. 25-35
© Instytut Mechaniki Górotworu PAN
Termoanemometryczne pomiary przepływów
dwuwymiarowych z uwzględnieniem zwrotu
KATARZYNA SOCHA, PAWEŁ LIGĘZA
Instytut Mechaniki Górotworu PAN, ul. Reymonta 27; 30-059 Kraków
Streszczenie
Pomiar dwuwymiarowych pól prędkości jest bardzo ważnym zagadnieniem metrologicznym między innymi
w pomiarach wentylacyjnych, klimatyzacyjnych, technikach chłodzenia. Istotne jest nie tylko wyznaczenie wartości
składowych prędkości, ale również określenie zwrotu przepływu. Jedną ze stosowanych metod pomiarowych jest
termoanemometria, która w klasycznej formie umożliwia wyłącznie pomiar składowych wektora prędkości przepływu, bez uwzględnienia jego zwrotu.
W pracy przedstawiono przegląd termoanemometrycznych metod pomiaru dwuwymiarowych pól prędkości.
Omówiono metody umożliwiające wyznaczenie tylko wartości składowych wektora prędkości (sonda X) oraz metody
wykrywające zwrot (anemometr pulsacyjny PWA, ruchoma sonda FHA).
Na zakończenie przedstawiono nową metodę pomiarową, wykorzystującą dwuwłóknowy czujnik z odprowadzeniami na środku każdego włókna. Pozwala on na wyznaczenie wartości składowych oraz zwrotu wektora
prędkości.
Słowa kluczowe: termoanemometria, wektor prędkości, przepływ dwuwymiarowy
1. Wstęp
Bardzo często przy pomiarze wektora prędkości przepływu istotne jest określenie, nie tylko jego
wartości i kierunku, ale również zwrotu. Ma to szczególne znaczenie, między innymi, przy kontrolowaniu
stanu przewietrzania kopalń, sal widowiskowych, szpitalnych, a także przy badaniu oddechu pacjenta pod
narkozą (Kiełbasa, 2003). Również w występującym w sieciach wentylacyjnych kanale z uskokiem oraz
w dyfuzorach, można zaobserwować tzw. przepływy rewersyjne lub recyrkulacje, których analiza wymaga
pełnego opisu wektora przepływu.
Jedną ze stosowanych metod pomiaru prędkości przepływu gazów jest termoanemometria. Polega
ona na określaniu intensywności wymiany ciepła między medium, a umieszczonym w nim grzanym elementem, np. czujnikiem wykonanym z drutu wolframowego o bardzo małej średnicy. Jest to metoda pomiaru
pośredniego, charakteryzuje ją mała pojemność cieplna związana z małymi wymiarami czujnika, prawie
punktowym pomiarem oraz małym zaburzaniem mierzonego strumienia przepływu. Klasyczne termoanemometryczne metody pomiarowe nie umożliwiają wyznaczenia zwrotu wektora prędkości, a wyłącznie
wartości jego składowych i kierunek. Jest to związane z tym, że straty cieplne występujące w nagrzanym
włóknie nie są wrażliwe na zwrot przepływu, a jedynie na jego kierunek i wartość, przy zaniedbaniu wpływu
konstrukcji czujnika (efekty przesłaniania włókna przez wsporniki). Wadą termoanemometrii jest również
spadek czułości dla bardzo małych prędkości przepływu (rzędu pojedynczych cm/s), spowodowany rosnącym udziałem konwekcji swobodnej.
1.1. Prędkość efektywna
Dla pojedynczego włókna, przestrzenny wektor prędkości można rozłożyć na trzy składowe (równoległą, prostopadłą oraz binormalną), jak zostało przedstawione na rysunku 1a. Na podstawie modułów tych
Katarzyna Socha, Paweł Ligęza
26
składowych można wyliczyć prędkość efektywną korzystając z zależności Jorgensena (Jorgensen, 1971;
Poleszczyk, 2002; Rachalski, 2003):
2
Vef2 = V N2 + k 2VT2 + h 2 VBN
(1)
gdzie:
Vef
VN
VT
VBN
–
–
–
–
prędkość efektywna, odpowiedzialna za efekt chłodzenia gorącego włókna,
składowa prostopadła do płaszczyzny wyznaczonej przez włókno i jego wsporniki,
składowa równoległa do włókna,
składowa prostopadła do włókna leżąca w płaszczyźnie wyznaczonej przez włókno i wsporniki
(binormalna),
k – współczynnik uwzględniający wpływ składowej równoległej do osi włókna,
h – współczynnik uwzględniający wpływ składowej binormalnej, jego wartość jest bliska jedności.
a)
b)
y
y’
y’
VT
VT
x’
VBN
VN
V
w³ókno
V
a
b
w³
z’
ók
no
VN
q
a
a
Vy
x
Vx
x’
Rys. 1. Rozkład wektora prędkości na trzy składowe dla pojedynczego włókna (a), oraz wektor pola dwuwymiarowego
na płaszczyźnie XY (b)
W przepływie dwuwymiarowym, równanie Jorgensena (1) można uprościć do postaci:
Vef2 = VN2 + k 2VT2
(2)
Rozkład wektora prędkości w układzie współrzędnych włókna (x’, y’) można wyrazić w zewnętrznym
układzie współrzędnych (x, y) za pomocą następujących zależności:
Vx = VT sin a + VN cos a
Vy = VT cos a - VN sin a
(3)
Innym sposobem obliczenia prędkości efektywnej w polu dwuwymiarowym jest wyrażenie jej za
pomocą modułu i funkcji kąta α w następujący sposób:
~
Vef = V f (a )
gdzie:
(4)
~
V – wartość modułu prędkości mierzonego przepływu,
α – kąt pomiędzy normalną do włókna i wektorem przepływu (rysunek 1b).
Funkcja f(α) wykorzystywana w równaniu (4) może przyjąć jedną z następujących postaci (Brunn,
1995):
Termoanemometryczne pomiary przepływów dwuwymiarowych z uwzględnieniem zwrotu
1
ì (cos 2a + k 2 sin 2 a ) 2
ï m
ïcos a
1
ï
2
f (a ) = í[1 - b (1 - cos 2 a )]
ï
ïcos(a + Da e )
ïîcos a + e (cos a - cos 2a )]
27
(5a)
(5b)
(5c)
(5d)
(5e)
gdzie: k, m, b, m, Δαe, ε są to współczynniki, wyznaczane podczas wzorcowania (tzw. „yaw coefficient”).
Każda z przytoczonych postaci funkcji f(α) charakteryzuje się tym, że posiada tylko jeden parametr.
Pierwsza funkcja f(α) jest najczęściej spotykana w literaturze (Elsner i Drobniak, 1995). Można sprowadzić
~
~
ją do równania Jorgensena (2), jeżeli przyjmie się podstawienia: VN = Vcosα oraz VT = Vsin α.
1.2. Prawo Kinga
Zależność między sygnałem pomiarowym z włókna a prędkością efektywną w układzie stałotemperaturowym opisuje prawo Kinga:
E 2 = A + BVefn
(6)
gdzie:
E – napięcie będące sygnałem pomiarowym z czujnika,
A, B, n – współczynniki uzyskiwane podczas wzorcowania.
Przytoczone zależności (1), (4) i (6) stanowią podstawowe narzędzia do opisu czujników termoanemometrycznych. Większość sposobów pomiaru składowych wektora prędkości przepływu bazuje na tych
równaniach, uwzględniając dodatkowo specyficzną przestrzenną budowę konkretnej sondy pomiarowej, lub
też specyficzne warunki jej pracy.
2. Sonda jednowłóknowa
Pojedyncza sonda termoanemometryczna zbudowana jest z obsadki, dwóch wsporników oraz rozpiętego na nich włókna pomiarowego. Rozróżnia się dwa rodzaje sond jednowłóknowych: sondę o włóknie
umieszczonym prostopadle do jej osi – sonda SN (ang. Single Normal) oraz sondę z włóknem pochylonym
względem osi – sonda SY(ang. Single Yawed).
Do pomiarów przepływów dwuwymiarowy wykorzystuje się przede wszystkim sondę SY (Bruun,
1995). Na rysunku 2 przedstawiono jednowłóknową sondę SY.
Rys. 2. Schemat sondy jednowłóknowej SY
2.1. Wzorcowanie sondy SY
W trakcie wzorcowania sondy SY wyznaczane są jej parametry A, n, B z równania (6) oraz parametr
występujący w funkcji f(α) (5). Na podstawie równań (4) i (6) zależność pomiędzy otrzymanym sygnałem
pomiarowym, a wyznaczaną prędkością, w funkcji kąta α, ma następującą postać:
Katarzyna Socha, Paweł Ligęza
28
Ù
~
Ea2 = A + B(a ) V n
(7)
gdzie:
Ù
(8)
B (a ) = B[ f (a )] n
W pierwszym kroku kalibracji wykonywana jest seria pomiarów dla dowolnie przyjętego, stałego kąta α–
(zazwyczaj około 45°) oraz różnych wartości prędkości. Następnie do otrzymanych danych pomiarowych, za
pomocą metody sumy najmniejszych kwadratów, dopasowywana jest funkcja (7), przy założeniu, że α = α– .
W wyniku obliczeń otrzymuje się parametry: A, n oraz współczynnik B^ (α– ), zależny od ustawienia sondy.
Z równania (8) wynika, że do wyznaczenia współczynnika B potrzebne jest określenie parametru
wybranej funkcji f (α) oraz wektora wartości B^ (α). W tym celu, w kolejnym kroku wykonuje się serię pomia~
rów dla różnych wartości kąta α i stałej prędkości. Znając parametry A, n, prędkość przepływu V i wartość
otrzymanego sygnału E w zależności od kąta α, można dopasować do danych pomiarowych zależność (7),
uzyskując w wyniku wektor wartości B^(α). Natomiast do wyznaczenia parametru funkcji f(α) przyjmuje się
następujący współczynnik napięciowy:
1
1
n
Ù
æ Ea2 - A æ n æç B (a ) æç
f (a )
*
ç =
Ea = ç 2
ç = f (a )
çÙ
ç E - Aç
ç B (a ) ç
è
è a
è
è
(9)
Dla konkretnej funkcji f(α), zależność (9) można przekształcić do postaci funkcji liniowej: y = ax.
W tabeli 1 podano podstawienia y, x oraz a dla poszczególnych funkcji (5).
Tab. 1. Podstawienia y, x, a dla poszczególnych funkcji f(α) (Brunn, 1990)
f(α)
y
a
x
(5a)
Eα*2 – 1
(1 – k2)
Eα2*sin2(α– ) – sin2(α)
(5b)
logEα*
m
(5c)
Eα*½ – 1
b
log(cosα/cosα– )
E *½(1 – cos½ α– ) – (1 – cos½α)
cosθ – Eα*
—
tgαe
sinθ
(5d)
α
Szukany parametr funkcji f(α) wyznaczany jest z nachylenia liniowej funkcji y = ax, natomiast współ–
czynnik B wyznaczany jest z zależności (8) przy założeniu, że kąt α = α .
2.2. Pomiar wektora prędkości
Pomiar dwuwymiarowego wektora prędkości za pomocą jednowłóknowej sondy SY polega na wykonaniu pomiarów dla dwóch ustawień sondy – po pierwszym pomiarze sonda obracana jest o 90° w płaszczyźnie pomiarowej. Na tej podstawie można tylko oszacować składowe wektora prędkości. Ze względu na
dwuetapowy pomiar, sondy tej nie można stosować przy pomiarach przepływów szybkozmiennych.
Przeliczenie otrzymanych sygnałów na wartości prędkości można wykonać na podstawie zależności
(6) oraz (2) lub (4), po wcześniejszym wywzorcowaniu czujnika.
3. Sonda X
Najpopularniejszą sondą do pomiarów płaskich pól prędkości jest tzw. sonda X. Jest ona zbudowana
z dwóch skrzyżowanych i wzajemnie prostopadłych włókien (rysunek 3a). Sonda ta umożliwia jednoczesny pomiar składowych wektora prędkości przepływu, ale bez możliwości określenia jego zwrotu. Wadą
tej sondy jest również mała czułość dla małych prędkości przepływu oraz wąski zakres kątów napływu,
w których pomiar może być dokonany. Na rysunku 3 przedstawiono schemat sondy X oraz rozkład wektora
prędkości dla jej włókien.
Termoanemometryczne pomiary przepływów dwuwymiarowych z uwzględnieniem zwrotu
29
y
w³
ók
no
2
VT
– a2
– a2
ók
w³
1
no
VN
– a1
q
Vy
x
Vx
a1
b)
a)
Rys. 3. a – sonda typu X; b – rozkład wektora prędkości dla sondy X
3.1. Wzorcowanie sondy
Można wyróżnić dwie główne metody kalibracji sondy X. W pierwszej, każde włókno sondy X
rozpatrywane jest niezależnie. Dla każdego włókna szukane parametry A, B, n oraz parametr dla wybranej
funkcji f(α) wyznaczane są identycznie, jak w przypadku jednowłóknowego czujnika SY.
Innym sposobem wzorcowania czujnika X jest utworzenie tzw. mapy kalibracji (Bruun, 1995). Metoda ta polega na wykonaniu jednoczesnego pomiaru obu napięć (E1, E2) dla różnych wartości zadawanej
~
prędkości V oraz kąta napływu θ (–45≤ θ ≤ 45). W wyniku otrzymuje się pęk prostych θ = const, poprzeci~
nany izotachami V = const. Na rysunku 4 pokazano hipotetyczną mapę kalibracji oraz sposób wyznaczania
wartości składowych wektora przepływu dla konkretnych napięć pomiarowych równych E1 i E2.
E2 [V]
V5
40°
20°
0°
V4
-20°
V3
E2(t)
-40°
V2
V1
(E1, E2) = >(V,q) = >(Vx , Vy )
E1(t)
E1 [V]
Rys. 4. Przykładowa mapa kalibracji na podstawie Bruun (1995)
~
Na podstawie otrzymanej pary napięć (E1, E2) określana jest wartość modułu prędkości V oraz kąt
~
napływu θ. Zależność pomiędzy parą (V, θ) i składowymi wektora prędkości (Vx, Vy) opisują następujące
zależności (rysunek 1b):
~
Vx = V cosq
~
Vy = V sin q
(10)
3.2. Pomiar sondą X
Na podstawie wyznaczonych z równania (6) wartości prędkości efektywnych dla obu włókien, składowe wektora prędkości wyliczane są z następujących zależności (Brunn, 1995):
Katarzyna Socha, Paweł Ligęza
30
Vef 1
Vx =
f1 (a 1)
g 2 (a 2) +
Vef 2
f2 (a 2 )
g1 (a 1) + g 2 (a 2)
g1 (a 1)
(11)
Vef 2
Vef 1
f 2 (a 2 ) f1 (a 1)
Vy =
g1 (a 1) + g 2 (a 2 )
Funkcja g(α) jest wyznaczana w następujący sposób:
g (a ) = -
1
df (a )
×
f (a ) da
(12)
W tabeli 2 przedstawiono postacie funkcji g(α) w zależności od wybranej funkcji f(α).
Tab. 2. Przykładowe postacie funkcji g(α) w zależności od wybranej funkcji f(α) (Brunn i in., 1990a)
f(α)
g(α)
2
(5a)
(5b)
cos a (1 - k 2 )
tga
cos 2 a + k 2 sin 2 a
m . tgα
1
(5c)
(5d)
[b (1 - b)cos 2 a + b 2 cos a ]
1
2
[1 - b(1 - cos 2 a )]
tga
tg(α + Δαe)
3.3. Metoda „look-up table”
Metoda ta umożliwia szybkie otrzymanie składowych wektora prędkości z uzyskanych sygnałów
pomiarowych. Polega ona na utworzeniu macierzy referencyjnej (mapy kalibracji), na podstawie danych
otrzymanych w trakcie wzorcowania. Indeksami takiej macierzy są otrzymane napięcia (E1, E2). Natomiast
komórki macierzy zawierają obliczone składowe wektora prędkości. Wyznaczenie wektora prędkości polega
na odczytaniu konkretnych wartości z macierzy dla konkretnej pary napięć pomiarowych.
Do interpretacji otrzymanych punktów pomiarowych, których nie uzyskano w trakcie kalibracji
konstruowany jest schemat interpolacji. Najpierw znajdowane są wartości napięć o wartości mniejszej, ale
najbardziej zbliżonej do otrzymanej pary (E1(i), E2(j)). Następnie metoda interpolacji wykorzystuje wartości:
E1(i), E1(i+1), E2(j), E2(j+1) do wyznaczenia szukanych wartości składowych prędkości przepływu (Bruun,
1995). Główną wadą tej metody są znaczne rozmiary macierzy zawierającej wyniki kalibracji. Natomiast
do zalet należy zaliczyć krótki czas potrzebny na przeliczenie otrzymanych sygnałów pomiarowych na
składowe wektora prędkości.
3.4. Metoda „look-up inversion”
W metodzie tej dla każdego włókna tworzony jest na podstawie pomiarów pęk krzywych dla różnych
~
~
wartości kąta napływu θ oraz wartości prędkości V . Krzywe te rysowane są na wykresie E = f( V ) dla każdego
włókna oddzielnie. Podczas pomiarów otrzymane napięcia E1, E2 rysowane są w postaci prostej na wykresie
odpowiadających konkretnemu włóknu (rysunek 5a-b). Punkty przecięcia prostej z pękiem krzywych są
~
następnie przenoszone na wykres V = f(θ) i łączone krzywą odpowiadającą konkretnemu włóknu (rysunek
~
5c). Punkt przecięcia się tych krzywych to szukana para (V , θ) opisująca badany wektor przepływu (Bruun
i in., 1990b). Składowe wektora prędkości odpowiadające otrzymanej parze wyznaczane są z zależności
(10). Na rysunku 5 przedstawiono schemat działania metody „look–up inversion”.
Termoanemometryczne pomiary przepływów dwuwymiarowych z uwzględnieniem zwrotu
E1 [V]
E1(t)
a
b
c
d
-40°
-20°
0°
20°
40°
e
q
E2 [V]
q
1
E2(t)
2
3
4
5
31
V [m/s]
-40°
-20°
0°
20°
40°
5
e
4
d
3
V
V [m/s]
a)
V [m/s]
b)
a
c
2
b
q
c)
1
q [°]
Rys. 5. Schemat działania metody „look-up inversion” na podstawie Brunn i in. (1990b)
4. Sonda umieszczona na ruchomym ramieniu (FHA)
Klasyczne sondy termoanemometryczne umożliwiają wyznaczenie wartości składowych wektora prędkości, czyli amplitudę oraz kierunek nawiewu. Do określenia zwrotu wektora prędkości może posłużyć metoda, w której sonda (np. sonda X) umieszczona zostaje na ruchomym ramieniu (flying hot-wire probe).
Metoda FHA polega na pomiarze prędkości poruszającej się sondy Vp oraz prędkości względnej Vr,
mierzonej za pomocą sondy (Al-Kayiem, Bruun,1991; Bruun, 1995). Prędkość przepływu natomiast jest
obliczana z zależności:
V = Vp + Vr
(12)
W literaturze można spotkać zastosowanie tej metody dla liniowego ruchu sondy, ruchu po okręgu
(rysunek 6a) oraz ruchu krzywoliniowego (rysunek 6b) (Bruun, 1995).
a)
0
j
b)
j
r
L
w
a
R
R
y
y
b
c
P
P
c
c
x
y
y
x
c
Rys. 6. Schemat mechanizmu do poruszania sondy w metodzie FHA; a – ruch po okręgu; b – ruch krzywoliniowy
Istotne przy stosowaniu metody FHA jest dokładne określenie pozycji sondy w punkcie P(xp, yp), w którym wykonywany jest pomiar. Położenie to określane jest na podstawie geometrii mechanizmu przesuwającego
sondę i jest wykorzystywane do wyznaczenia składowych wektora prędkości Vp. Zależności na składowe
wektora prędkości dla ruchu po okręgu oraz ruchu krzywoliniowego zostały umieszczone w tabeli 3:
Katarzyna Socha, Paweł Ligęza
32
Tab. 3. Zależności określające współrzędne punkt pomiarowego oraz składowe wektora prędkości
dla przypadku ruchu po okręgu oraz ruchu krzywoliniowego
Składowe
Ruch po okręgu
xp
c + Rsinφ + ccosφ
yp
Vxp =
d xp
dt
d yp
Vyp =
dt
gdzie: w =
Ruch krzywoliniowy
b
c
sin j - L + c
a
a
r
R + Rcosφ – csinφ
æ bæ
æ cæ
a + b - r + r cosj - ç1 + ç L - r ç1 + ç sin j
a
è
è
è aè
ω (Rcosφ – csinφ)
cr sin 2j æ
æb
wr ç cos j +
ç
2 aL è
èa
–ω(Rsinφ + ccosφ)
éæ b r sin 2j
ù
c
- sin r - cos j ú
w r êç1 + æç
a
ëè a è 2 L
û
(13)
(14)
dr
, pozostałe oznaczenia zaznaczono na rysunku 6.
dt
Wartości składowych prędkości dla sondy X (V'xr, V'yr) wyznaczane są z zależności (11). Przeliczenie
tych wartości na składowe prędkości w rozpatrywanym układzie współrzędnych (Vxr, Vyr) dokonywane jest
za pomocą następujących zależności:
Vxr = Vxr¢ cosy - Vyr¢ siny
(15)
Vyr = Vxr¢ siny + V yr¢ cosy
gdzie: dla ruchu po okręgu wartość ψ = 180° – ρ, a dla ruchu krzywoliniowego: y = arcsin
r sin r
.
a
Składowe wektora prędkości przepływu wyznaczane są z następujących zależności:
V x = Vxr + Vxp
(16)
Vy = Vyr + Vyp
Poza niewątpliwą zaletą pomiaru wszystkich parametrów dwuwymiarowego wektora przepływu,
główną wadą układu jest zaburzanie strumienia w skutek ruchu sondy wraz z ramieniem, a także brak możliwości wykonania pomiaru punktowego.
5. Anemometr pulsacyjny (The Pulsed – Wire Anemometer, PWA)
Sonda pulsacyjna (typ Bradbury-Castro) służąca do wykrywania zwrotu prędkości, zbudowana jest
z trzech włókien (rysunek 7). Środkowe włókno pełni rolę nadajnika impulsów cieplnych. Dwa pozostałe,
równoległe względem siebie, pracują jako termometry rezystancyjne. Są one umieszczone w tej samej odległości względem środkowego włókna i są do niego prostopadłe (Handford, Bradshaw, 1989; Brunn, 1995).
Rys. 7. Schemat sondy pulsacyjnej
Termoanemometryczne pomiary przepływów dwuwymiarowych z uwzględnieniem zwrotu
33
Pomiar sondą pulsacyjną sprowadza się do określenia czasu (time of flight), w jakim generowany
impuls cieplny zostanie zarejestrowany przez jedno z włókien anemometrycznych pracujących jako termometry rezystancyjne.
5.1. Kalibracja
W metodzie PWA każdy termometr rezystancyjny jest wzorcowany oddzielnie. Zależność pomiędzy
mierzonym czasem propagacji impulsu cieplnego, a prędkością przepływu może zostać przedstawiona
w następujący sposób:
V=
a
+ f (T )
T
(17)
gdzie:
V – mierzona prędkość przepływu,
T – czas propagacji impulsu cieplnego (time of flight),
a – parametr związany z odległością termometru od nadajnika, uwzględniający niedokładność
w wykonaniu sondy
Funkcja f(T) uwzględnia takie zjawiska jak: dyfuzja termiczna, stała czasowa włókna i może być
wyznaczona z następującej zależności:
f (T ) =
b
Tn
(18)
gdzie:
b – parametr wyznaczany podczas kalibracji,
n=3
(Bruun, 1995).
5.2. Pomiar sondą pulsacyjną
Istnieją trzy metody pomiaru czasu propagacji impulsu cieplnego (Handford i Bradshaw, 1989):
– ekstrapolowanie sygnału pochodzącego z termometru od momentu wygenerowania impulsu cieplnego
do wykrycia zbocza o największej stromości,
– pomiar czasu osiągnięcia zadanego poziomu przez sygnał pochodzący z włókna,
– oraz osiągnięcie zadanego poziomu pierwszej pochodnej sygnału pomiarowego.
Zwrot przepływu wyznaczany jest podczas analizy sygnałów pochodzących z termometrów. Zmiana
temperatury jest widoczna jedynie na włóknie znajdującym się za włóknem pulsacyjnym względem przepływu. Na podstawie obliczonej wartości czasu propagacji impulsu cieplnego wyznaczana jest wartość
wektora prędkości przepływu.
Opisywana sonda została wykorzystana do pomiaru dwuwymiarowego przepływu w pracy Venås
i wsp. (1999). Pomiary wykonywane były najpierw dla sondy ustawionej, tak aby wszystkie włókna były
prostopadłe do przepływu. Następnie sonda została obrócona o 90° względem włókna pulsacyjnego.
7. Podsumowanie
W pracy przedstawiono szereg metod przeznaczonych do pomiaru dwuwymiarowego wektora przepływu, przy pomocy czujników termoanemometrycznych. Pomiar wartości prędkości przepływu może
być zrealizowany nawet przy użyciu pojedynczej nieruchomej sondy np. sondy SY. Natomiast kierunek
przepływu można wyznaczyć przy pomocy jednego włókna jedynie poprzez wielokrotne pomiary przy
różnych wartościach obrotu sondy względem przepływu. W taki sposób nie można mierzyć przepływów
szybkozmiennych. Zaletą stosowania sond jednowłóknowych przy pomiarze przepływów dwuwymiarowych
są ich niewielkie rozmiary, niewielkie zakłócenia przepływu oraz duża rozdzielczość przestrzenna (Elsner
i Drobniak, 1995).
Katarzyna Socha, Paweł Ligęza
34
W celu pomiaru kierunku przepływu wskazane staje się zastosowanie przynajmniej dwóch włókien.
Takie pomiary mogą być realizowane, np. przez sondę X. Umożliwia ona, na podstawie pomiaru sygnałów z dwóch włókien, jednoczesne wyznaczenie obu składowych przepływu. Natomiast określenie zwrotu
przepływu możliwe jest dopiero, gdy sonda ta umieszczona zostanie na ruchomym ramieniu (metoda FHA).
Wówczas można wyznaczyć zarówno wartość, jak i kierunek oraz zwrot wektora prędkości. Główną wadą
tej metody jest znaczne zaburzanie przepływu wywołane ruchem sondy wraz z ramieniem.
Kolejna omawiana metoda używana do określania wektora prędkości przepływu wykorzystuje sondę
pulsacyjną (PWA). Jej wadą jest możliwość wyznaczenia zwrotu jedynie składowej prostopadłej do włókna. Wyznaczenie obu składowych prędkości wektora dwuwymiarowego wiąże się, podobnie jak dla sondy
jednowłóknowej, z koniecznością obrotu sondy.
Podsumowując można stwierdzić, że żadna z przytoczonych metod pomiarowych nie umożliwia wyznaczenia wszystkich parametrów dwuwymiarowego wektora przepływu z zachowaniem cennych własności
sond termoanemometrycznych, takich jak: punktowy pomiar, nieznaczne zakłócanie przepływu.
W Pracowni Metrologii Przepływów PAN zaprojektowano dwuwłóknową sondę do wykrywania
zwrotu dla szerokiego zakresu prędkości. Na rysunku 8 przedstawiono rozkład napięć na włóknach takiego
czujnika.
Ec 1
Es 1
Es 2
Ec 2
Rys. 8. Rozkład napięć na włóknach sondy do pomiaru dwuwymiarowego wektora prędkości przepływu
Sonda ta ma wzajemnie prostopadłe względem siebie włókna. Każde z włókien posiada w środku
dodatkowy, trzeci wspornik, który wyprowadza napięcie ze środka włókna. Pomiar prędkości polega na
zmierzeniu dla każdego z włókien dwóch napięć: na całym włóknie Ec oraz na środku włókna Es. Różnica
napięć na obu częściach włókna wynosi:
D Ei = 2 Esi - Eci
(19)
gdzie: i – numer włókna.
Zwrot składowej wektora prędkości można wyznaczyć na podstawie znaku różnicy ΔEi. Natomiast
wartość składowych wektora prędkości wyliczane są na podstawie napięć Eci (Kiełbasa, 2003).
7. Literatura
Al-Kayiem H.H., Brunn H.H., 1991: Evaluation of a flying X hot-wire probe system, Measurement Science and
Technology. Vol. 2.
Bruun H.H., Nabhani N., Al-Kayiem H.H., Fardad A.A., Khan M.A., Hogarth E., 1990a: Calibration and analysis of
X hot-wire probe signals, Measurement Science and Technology. Vol. 1.
Bruun H.H., Nabhani N., Fardad A.A., Al-Kayiem H.H., 1990b: Velocity component measurements by X hot-wire
anemometry, Measurement Science and Technology. Vol. 1.
Brunn H. H., 1995: Hot-wire Anemometry. Principles and Signal analysis. University Press, Oxford.
Elsner J.W., Drobniak S., 1995: Metrologia turbulencji przepływów, Maszyny Przepływowe, t. 18.
Handford P.M, Bradshaw P., 1989: The pulsed-wire anemometry, Experiments in Fluids 7.
Jorgensen, F.E., 1971: Directional Sensitivity of Wire and Fiber-film Probes, Disa Information, No. 11.
Termoanemometryczne pomiary przepływów dwuwymiarowych z uwzględnieniem zwrotu
35
Kiełbasa J., 2003: Eksperymentalna weryfikacja jednowłóknowego indykatora zwrotu prędkości przepływu, Prace
Instytutu Mechaniki Górotworu PAN, t. 5, nr 2, s. 227-236.
Poleszczyk E., 2002: Termoanemometryczna metoda wyznaczania wektora prędkości przepływu gazu, Prace Instytutu
Mechaniki Górotworu PAN, seria: Rozprawy, Monografie, nr. 1, PAN.
Rachalski A., 2003. Algorytm wyznaczania wektora prędkości przepływu w pomiarach termoanemometrycznych, Prace
Instytutu Mechaniki Górotworu PAN, t. 5, nr 2, s. 253-259.
Venås B., Abrahamsson H., Krogstad P.-Å., Löfdahl, 1999: Pulsed hot-wire measurements in two- and three-dimensional
wall jets, Experiments in Fluids 27.
Two-dimensional flow hot-wire measurements
Abstract
Measurement two-dimensional field of velocity is very important metrological problem, especially in
ventilation, air conditioning measurements, cooling technique. It is necessary not only determined value and
direction but also sense of velocity vector.
The paper outlines few hot-wire methods used to measurement two-dimensional field of velocity. Described
methods enabled to determine only value components of velocity vector (X probe) and methods detecting sense of
velocity vector (flying hot-wire anemometry, pulsed wire anemometer).
In the article new measurement method, which use two-wire sensor is also presented. The additional supports
placed in the middle of the each wire enable to determine sense of velocity vector
Keywords: Hot-wire anemometry, two-dimensional flow, velocity vector
Recenzent: Prof. dr hab. inż. Stanisław Gumuła, AGH

Podobne dokumenty