ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM

Transkrypt

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM
ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW
LABORATORIUM
Ćwiczenie 2
Badanie algorytmów adaptacyjnych LMS i RLS
1. CEL ĆWICZENIA
Celem ćwiczenia jest samodzielna implementacja przez studentów dwóch podstawowych
algorytmów adaptacyjnych, LMS (Least Mean Square) i RLS (Recursive Least Squares),
oraz zbadanie ich podstawowych właściwości, takich jak: stabilność, szybkość zbieżności,
niedopasowanie, a także zdolność do śledzenia liniowych systemów niestacjonarnych.
2. ZAKRES BADAŃ
Badania eksperymentalne algorytmów LMS i RLS obejmują:
• samodzielną implementację algorytmów LMS i RLS w języku MATLAB
• badanie stabilności algorytmu LMS w zależności od rzędu filtru adaptacyjnego, kroku
adaptacji α oraz typu sygnału wejściowego
• określenie parametrów filtru adaptacyjnego i właściwości sygnału wejściowego mających wpływ na niedopasowanie algorytmów LMS i RLS w stanie ustalonym
• analizę porównawczą szybkości zbieżności dwóch badanych w ćwiczeniu algorytmów
w układzie adaptacyjnej identyfikacji liniowego systemu stacjonarnego
• ocenę zdolności śledzenia przez filtry adaptacyjne LMS i RLS niestacjonarności identyfikowanego systemu
3. PODSTAWY TEORETYCZNE
Algorytmy LMS i RLS są podstawowymi algorytmami adaptacyjnymi, z których wywodzi się cały szereg ich najrozmaitszych modyfikacji. Celem tych modyfikacji jest poprawa
właściwości algorytmów pierwotnych. Głównie dąży się do zwiększenia szybkości zbieżności algorytmu LMS oraz do redukcji złożoności obliczeniowej osiągającego świetne wyniki
algorytmu RLS. Bardzo często inspiracją do tworzenia nowych algorytmów adaptacyjnych
są wymagania konkretnej aplikacji, w której wykorzystano technikę filtracji adaptacyjnej.
Z wybranymi nowymi podejściami do syntezy algorytmów adaptacyjnych oraz specyficznymi aplikacjami, w których znajdują one zastosowanie, studenci zapoznają się podczas
realizacji swoich zadań projektowych.
Ze względu na fakt, że szczegółowe wyprowadzenia algorytmów LMS i RLS przedstawiono na wykładzie, jak również można je znaleźć w literaturze poświęconej tematyce filtracji
1
adaptacyjnej, w niniejszym punkcie instrukcji przytoczymy jedynie rekursje obydwu algorytmów oraz przedstawimy podstawowe zależności opisujące ich właściwości.
3.1 Algorytm LMS i jego właściwości
Wprowadźmy na początek wspólne dla wszystkich algorytmów adaptacyjnych oznaczenia. Przez xn = [x(n), x(n − 1), . . . , x(n − L + 1)]T oznaczać będziemy wektor danych
wejściowych filtru adaptacyjnego, zaś przez f n = [fn (0), fn (1), . . . , fn (L − 1)]T wektor jego
współczynników w chwili n, przy czym L jest tu rzędem filtru. Rekursje algorytmu LMS
wraz z warunkami początkowymi zamieszczono w tablicy 1.
Tablica 1
Algorytm LMS
Warunki początkowe:
f0 = 0
Dla kolejnych chwil czasu n obliczamy:
e(n) = d(n) − f Tn xn
f n+1 = f n + αe(n)xn
Sygnały x(n), d(n) i e(n) to odpowiednio sygnał wejściowy, sygnał odniesienia oraz
sygnał błędu. Stała α, nazywana również krokiem adaptacji, jest stałą heurystyczną dobieraną doświadczalnie w zależności od konkretnego zastosowania algorytmu. Aby algorytm
pracował stabilnie musi ona spełniać warunek [4, 1, 3]:
0<α<
2
λmax
,
(1)
gdzie λmax jest największą wartością własną macierzy autokorelacji R sygnału wejściowego
x(n). W praktyce jednak do oszacowania górnej granicy wartości jakie może przyjmować
stała α wykorzystuje się warunek nie wymagający znajomości wartości własnych macierzy
autokorelacyjnej:
2
0<α<
,
(2)
L · E[x2 (n)]
z którego wynika, że kres górny wartości, jakie może przyjmować stała α jest okreslony
przez rząd filtru i moc sygnału wejściowego.
Wektor współczynników obliczany za pomocą algorytmu LMS ma charakter losowy i nie
ma gwarancji, że jest on zbieżny do optymalnego rozwiązania wienerowskiego f ∗ . Przy
pewnych mocnych założeniach odnośnie sygnałów x(n) i d(n) dowodzi się [3], że wektor
współczynników f n filtru adaptacyjnego LMS jest średnio zbieżny do tego rozwiązania,
tzn.
lim E[f n ] → f ∗ .
(3)
n→∞
Warunek (3) nie oznacza jednak zbieżności błędu średniokwadratowego J(n) = E[e2 (n)]
rozwiązań generowanych przez algorytm LMS do minimalnego błędu średniokwadratowego
Jmin optymalnego rozwiązania MMSE. W rzeczywistości błąd średniokwadratowy zbiega
do pewnej ustalonej wartości, którą oznaczymy przez J∞ . Wynika to z faktu, że wartości
współczynników f n filtru, podlegają po osiągnięciu stanu ustalonego pewnym fluktuacjom
wokół rozwiązania optymalnego f ∗ . Różnica między wartością błędu średniokwadratowego
2
uzyskaną przez algorytm w stanie ustalonym, a minimalną wartością tego błędu nazywana jest błędem ekscesu i oznaczana przez Jex = J∞ − Jmin . Stosunek błędu ekscesu
do minimalnego błędu średniokwadratowego, będący miarą stopnia odchylenia rozwiązań
generowanych przez algorytm od optymalnego rozwiązania wienerowskiego, jest określany
jako niedopasowanie M (ang. misadjustment):
M=
Jex
J∞ − Jmin
=
.
Jmin
Jmin
(4)
Niedopasowanie algorytmu LMS, przy założeniu stacjonarności sygnałów x(n) i d(n), określa wzór:
MLM S = αtr(R),
(5)
gdzie tr(R) jest śladem macierzy autokorelacji sygnału wejściowego.
Dla algorytmów adaptacyjnych określa się ponadto parametr zwany stałą zbieżności
algorytmu τ , który jest zdefiniowany jako czas, po którym błąd estymacji najwolniej
zbieżnego współczynnika filtru adaptacyjnego maleje e-krotnie [4, 1]. Dla algorytmu LMS
stałą zbieżności określa wzór:
1
τLM S =
,
(6)
αλmin
gdzie λmin jest najmniejszą wartością własną macierzy autokorelacji R.
Wracając do kroku adaptacji α, możemy, po przyjrzeniu się wzorom (5) i (6), łatwo
stwierdzić, że dobór tego parametru wiąże się z kompromisem między szybkością zbieżności algorytmu a jego niedopasowaniem. Wraz ze wzrostem wartości kroku adaptacji, rośnie
szybkość zbieżności, ale towarzyszy temu również wzrost niedopasowania.
3.2 Algorytm RLS i jego właściwości
Drugim z badanych w niniejszym ćwiczeniu algorytmów adaptacyjnych jest algorytm
RLS. Otrzymujemy go w wyniku minimalizacji funkcji kosztu określonej wzorem:
J(n) =
n
X
λn−i e2 (i),
(7)
i=1
gdzie λ jest stałą zapominania, przyjmującą wartości z przedziału (0, 1]. Wprowadzenie
tego parametru powoduje wykładnicze ”oknowanie” sygnału błędu e(n), tzn. działanie polegające na tym, że starsze próbki sygnału błędu estymacji są brane do sumarycznej miary błędu J(n) z odpowiednio mniejszą wagą. Za miarę ”pamięci” algorytmu RLS można
przyjąć odwrotność dopełnienia współczynnika λ do jedności, tj. 1/(1 − λ). W przypadku podstawowej wersji algorytmu RLS, stosowanej z reguły dla sygnałów stacjonarnych,
przyjmuje się λ = 1. Dostajemy wtedy rekursywne rozwiązanie klasycznego, dobrze znanego zagadnienia najmniejszych kwadratów, a ”pamięć” algorytmu jest wtedy nieskończona.
Przyjmując λ 6= 1, otrzymujemy tzw. algorytm RLS z wykładniczą stałą zapominania.
Algorytm ten zamieszczono w tablicy 2.
3
Tablica 2
Algorytm RLS
Warunki początkowe:
P 0 = γI
γ1
f0 = 0
Dla kolejnych chwil czasu n obliczamy:
e(n|n − 1) = d(n) − f Tn−1 xn
P n−1 xn
kn =
λ + xTn P n−1 xn
f n = f n−1 + kn e(n|n − 1)
i
1h
Pn =
P n−1 − kn xTn P n−1
λ
Występująca w rekursjach algorytmu RLS macierz P n o wymiarze dim(P n ) = L × L
jest estymatą w chwili n macierzy R−1 , odwrotnej do macierzy autokorelacji sygnału wejściowego x(n) filtru adaptacyjnego. Symbol e(n|n − 1) oznacza tu błąd estymacji a priori,
w odróżnieniu do wykorzystanego w kryterium minimalizacji (7) błędu a posteriori e(n).
Błąd estymacji a posteriori oblicza się wykorzystując aktualny wektor współczynników
filtru f n , zaś błąd a priori - korzystając z wektora współczynników filtru f n−1 z chwili
poprzedniej. Wektor kn nazywany jest wektorem wzmocnienia algorytmu lub wektorem
wzmocnienia kalmanowskiego. Druga z przytoczonych nazw wektora kn wynika z faktu, że
algorytm RLS może być rozpatrywany jako szczególny przypadek filtru Kalmana.
Niedopasowanie algorytmu RLS w przypadku stacjonarności sygnałów x(n) i d(n) opisuje następująca formuła [2]:
1−λ
MRLS =
L.
(8)
1+λ
Ze wzoru (8) wynika, że błąd średniokwadratowy rozwiązań generowanych przez algorytm
RLS z nieskończoną ”pamięcią” (λ = 1) w przypadku, gdy sygnały x(n) i d(n) są stacjonarne, jest zbieżny do minimalnego błędu średniokwadratowego Jmin . To z kolei oznacza, że
algorytm RLS pracujący w określonych wyżej warunkach, jest w stanie zapewnić w stanie
ustalonym optymalne rozwiązanie problemu liniowej estymacji średniokwadratowej sygnałów.
3.3 Identyfikacja systemu liniowego za pomocą filtru adaptacyjnego
Część badań eksperymentalnych przeprowadzanych przez studentów podczas niniejszego ćwiczenia, a dokładniej analiza porównawcza szybkości zbieżności algorytmów LMS
i RLS oraz ocena zdolności śledzenia systemów niestacjonarnych przez te algorytmy, przeprowadzona zostanie z wykorzystaniem filtru adaptacyjnego w systemie adaptacyjnej identyfikacji nieznanego liniowego, w ogólności niestacjonarnego układu. Schemat takiego systemu przedstawiono na rys. 1. Zadaniem filtru adaptacyjnego jest tu takie przetworzenie
sygnału x(n), aby błąd estymacji e(n) był minimalny w sensie pewnego kryterium, które jest zależne od zastosowanego algorytmu. Po osiągnięciu zbieżności, filtr adaptacyjny
modeluje z pewną dokładnością nieznany system, z którym równolegle przetwarza sygnał
wejściowy x(n). Stopień naszej niewiedzy o identyfikowanym systemie może być różny.
4
s(n)
x(n)
y(n) +
hn
+
d(n)
y^(n)
fn
-
+
e(n)
Rys. 1: Schemat adaptacyjnego systemu identyfikacji nieznanego liniowego układu niestacjonarnego
W pierwszym podejściu możemy przyjąć, że nic nie wiemy ani o strukturze modelu ani
o właściwościach identyfikowanego systemu. W kolejnych przybliżeniach możemy zakładać, że system jest liniowy, dalej stacjonarny, aż po przyjęcie, że jest modelowany filtrem
SOI o znanym rzędzie. I takie, dość mocne założenia przyjmiemy w naszych badaniach.
W ostatnim eksperymencie ćwiczenia, w którym poddamy ocenie zdolność śledzenia fitrów
adaptacyjnych, z oczywistych względów odejdziemy od założenia o stacjonarności identyfikowanego systemu.
Stosowaną w symulacjach miarę dokładności estymacji odpowiedzi impulsowej identyfikowanego systemu będzie względny błąd estymacji określony wzorem:
δ(n) = 10 log
khn − f n k2
,
khn k2
(9)
gdzie hn jest odpowiedzią impulsową systemu niestacjonarnego w chwili n. Dla przypadku
stacjonarnego przyjmować będziemy, że hn = h.
4. IMPLEMENTACJA ALGORYTMÓW LMS I RLS (zadanie domowe)
Przed przystąpieniem do badań eksperymentalnych, zadaniem studentów jest samodzielne zaimplementowanie algorytmów LMS i RLS jako funkcji pakietu MATLAB. Implementacje te należy zrealizować przyjmując następujące prototypy tychże funkcji:
1. dla algorytmu LMS
[e, F] = lms(x, d, L, alfa)
2. dla algorytmu RLS
[e, F] = rls(x, d, L, lambda)
W trakcie implementacji przyjąć, że stała γ o dużej wartości, występująca w określonych
dla algorytmu RLS warunkach początkowych, wynosi 100.
Sygnały oznaczone literami x, d, e oraz parametry alfa i lambda korespondują w sposób oczywisty z sygnałami i parametrami, które pojawiają się w równaniach algorytmów
LMS i RLS zamieszczonych w tabelach 1 i 2, zaś L jest liczbą określającą rząd filtru adaptacyjnego. Wyjaśnienia wymaga natomiast macierz oznaczona przez F. Jest to macierz
współczynników filtru adaptacyjnego w kolejnych chwilach przetwarzania. Ma ona wymiar
5
dim(F) = L × M , gdzie M oznacza długość (liczbę próbek) realizacji sygnałów x(n) i d(n).
Macierz F jest potrzebna do wyznaczania względnego błędu estymacji δ(n) odpowiedzi impulsowej identyfikowanego systemu w kolejnych chwilach czasu n.
5. BADANIA EKSPERYMENTALNE (zadania laboratoryjne)
5.1 Badanie stabilności algorytmu LMS
1. Wygenerować 1000 próbek realizacji następujących sygnałów wejściowych:
x1 (n) – szumem białym o rozkładzie równomiernym w przedziale [-1, 1];
x2 (n) – szumem białym gaussowskim o zerowej średniej i jednostkowej wariancji;
x3 (n) – sygnałem cosinusoidalnym o pulsacji π/5 i zerowej fazie.
Dla każdego typu danych oraz dla rzędów filtrów L = 5 i L = 50 w pierwszej kolejności oszacować górną granice kroku adaptacji αg , zapewniającą stabilną pracę
algorytmu, a następnie wyznaczyć eksperymentalnie maksymalną graniczną wartość
tegoż parametru. Jako kryterium stabilności przyjąć wartości sygnału błędu. Duże i
niemalejące dla kolejnych chwil czasu n błędy świadczą o niestabilnym zachowaniu
algorytmu adaptacyjnego. We wszystkich przypadkach przyjąć, że sygnał odniesienia
d(n) jest tym samym sygnałem, co sygnał wejściowy. Skomentować uzyskane rezultaty.
2. Wygenerować dwa nieskorelowane ciągi 1000 próbek szumu białego o rozkładzie równomiernym w przedziale [-1, 1]. Obejrzeć przebieg sygnału błędu przyjmując jako
sygnał d(n) pierwszy ciąg, a jako sygnał x(n) drugi ciąg próbek. Rząd filtru ustalić
na L = 50, zaś krok adaptacji zmieniać w zakresie od αg (wyznaczonego wcześniej
dla tego typu danych i filtru o 50 współczynnikach) do wartości bliskiej 0. Porównać
przebiegi sygnałów błędu e(n) otrzymane w tym i w poprzednim doświadczeniu.
5.2 Wpływ stałych algorytmu oraz właściwości sygnału wejściowego na
szybkość zbieżności i niedopasowanie filtrów adaptacyjnych
W tym punkcie badań eksperymentalnych, jako sygnały wejściowe wykorzystamy M =
2000 próbkowe realizacje szumu gaussowskiego x1 (n) o zerowej średniej i jednostkowej wariancji (rozrzut wartości własnych macierzy autokorelacji χ(R) = 1) oraz sygnału x2 (n)
będącego realizacją procesu autoregresyjnego AR(1) o współczynnikach a = [1 -0,8]T oraz
o rozrzucie wartości własnych macierzy autokorelacji χ(R) = 9. Znormalizować wariancję
sygnału x2 (n) poprzez wykonanie następującej operacji: x2 = 0.6 * x2;. W celu uzyskania sygnałów odniesienia d1 (n) oraz d2 (n) określone sygnały wejściowe należy poddać
filtracji za pomocą filtru SOI o odpowiedzi impulsowej h = [1,0000 0,9000 0,3000 -0,5500
-0,4850 0,1424 0,4107 0,1056 -0,2347 -0,1913]T .
1. Dla algorytmu LMS przyjąć rząd filtru L = 10. Dokonać filtracji sygnałów wejściowych x1 (n) i x2 (n) dla dwóch wartości kroków adaptacji: α1 = 0, 05 i α2 = 0, 005. Na
jednym rysunku wykreślić wszystkie cztery trajektorie sygnału błędu podniesionego
do kwadratu, wykorzystując do tego celu funkcję semilogy. Co można powiedzieć
6
o wpływie wartości kroku adaptacji oraz rozrzutu wartości własnych macierzy autokorelacji sygnału wejściowego na szybkość zbieżności filtru adaptacyjnego strojonego
za pomocą algorytmu LMS?
2. Dla algorytmu RLS przyjąć rząd filtru L = 10. Dokonać filtracji sygnałów wejściowych x1 (n) i x2 (n) dla dwóch wartości stałych zapominania: λ1 = 0, 9 i λ2 = 0, 999.
Na jednym rysunku wykreślić wszystkie cztery trajektorie sygnału błędu podniesionego do kwadratu, tak jak to miało miejsce w przypadku algorytmu LMS. Co można
powiedzieć o wpływie wartości stałej zapominania i typu sygnału wejściowego na niedopasowanie oraz szybkość zbieżności algorytmu adaptacyjnego RLS?
5.3 Porównanie szybkości zbieżności algorytmów LMS i RLS
Badania przeprowadzone w punkcie 5.2 dały nam już pewien pogląd na szybkość zbieżności algorytmów LMS i RLS. W tym punkcie ćwiczenia dokonamy analizy porównawczej
szybkości zbieżności tych algorytmów w układzie adaptacyjnej identyfikacji systemu stacjonarnego. Miarą, którą wykorzystamy w eksperymencie będzie względny błąd estymacji δ(n)
odpowiedzi impulsowej systemu w kolejnych chwilach czasu, wyznaczony dla filtrów LMS
i RLS pobudzanych różnymi sygnałami wejściowymi. Sposób postępowania przy realizacji
doświadczenia symulacyjnego ujęto w kolejnych punktach.
1. Wygenerować M = 3000 próbek realizacji szumu gaussowskiego x1 (n) o zerowej średniej i jednostkowej wariancji oraz sygnału x2 (n) będącego realizacją procesu AR(4)
o współczynnikach a = [1 0,3 0,9 0,4 0,7]T (χ(R) ' 630). Trzecim sygnałem, który
zostanie wykorzystany będzie rzeczywisty sygnał mowy. Odpowiednia ilość próbek
takiego sygnału xm (n) jest zapisana jako wektor xm w pliku fraza.mat.
2. Wczytać dane z pliku h.mat. Wektor h stanowi odpowiedź impulsową h identyfikowanego systemu stacjonarnego. Wykorzystując znajomość charakterystyki systemu
wygenerować sygnały odniesienia d1 (n), d2 (n) oraz dm (n). Przyjąć, że szum zakłócający s(n) = 0.
3. Dokonać identyfikacji odpowiedzi impulsowej nieznanego systemu za pomocą algorytmów LMS i RLS, wykorzystując wszystkie trzy rodzaje sygnałów wejściowych. Po
każdorazowym wyznaczeniu macierzy F zawierającej estymaty odpowiedzi impulsowej systemu dla kolejnych chwil czasu n obliczyć względny błąd estymacji δ(n) tejże
odpowiedzi, wykorzystując funkcję delta.m. W celu uniknięcia zapełnienia pamięci
komputera, w kolejnych eksperymentach nadpisywać macierz F. W pamięci przechowywać jedynie przebiegi błędu δ(n), które zostaną porównane w końcowej fazie badań. W przypadku algorytmu LMS zastosować następujące wartości kroku adaptacji:
α1 = 0, 030, α2 = 0, 003 i αm = 0, 050. Są to wyznaczone doświadczalnie maksymalne
wartości tego parametru dla każdego typu sygnału wejściowego. Dla algorytmu RLS
we wszystkich trzech przypadkach przyjąć, że λ = 0, 980. Rząd filtrów L = 50.
4. Wykreślić trzy rysunki. Na pierwszym i drugim przedstawić przebiegi względnego
błędu estymacji δ(n) wyznaczone odpowiednio przy zastosowaniu algorytmu LMS
(pierwszy rysunek) oraz algorytmu RLS (rysunek drugi). Na trzecim wykresie zamieścić dwa przebiegi błędu δ(n): uzyskany w przypadku wykorzystania w procesie
identyfikacji filtru LMS pobudzanego sygnałem x1 (n) oraz otrzymany z użyciem filtru
RLS pracującego z sygnałem xm (n) jako sygnałem wejściowym.
7
Przeanalizować otrzymane wyniki. Skomentować zależność szybkości zbieżności algorytmów LMS i RLS od rodzaju sygnału wejściowego. Dokonać analizy porównawczej badanych algorytmów pod kątem szybkości zbieżności.
5.4 Badanie zdolności śledzenia przez filtry adaptacyjne LMS i RLS
niestacjonarności identyfikowanego systemu
Ostatnie zadanie laboratoryjne poświęcone jest bardzo istotnej, z punktu widzenia praktycznych zastosowań, cesze algorytmów adaptacyjnych, jaką jest zdolność do śledzenia niestacjonarności sygnałów bądź systemów. Cecha ta jest poniekąd podstawowym powodem
wielkiej popularności i atrakcyjności tego narzędzia przetwarzania sygnałów. To zmiany
widma estymowanych sygnałów, fluktuacje odpowiedzi impulsowej identyfikowanych systemów czy wahania wyrównywanej charakterystyki częstotliwościowej kanału transmisyjnego
powodują, że w aplikacjach charakteryzujących się tego typu problemami, nieodzownym
staje się zastosowanie filtrów adaptacyjnych, które są w stanie owe zmiany śledzić.
Eksperyment wykonywany przez studentów w tym punkcie polega na identyfikacji przy
użyciu filtrów typu LMS i RLS, zmieniającej się w czasie odpowiedzi impulsowej hn systemu
niestacjonarnego (rys. 1). W celu dokonania oceny zdolności filtrów LMS i RLS do śledzenia
niestacjonarności systemu, należy wykonać niżej opisane badania symulacyjne.
1. Wygenerować M = 6000 próbek sygnału AR(5) o współczynnikach a = [1 -0,65
0,70 -0,22 0,31 -0,18]T , będącego sygnałem wejściowym x(n). Uruchomić skrypt hn.m
generujący macierz Hn o wymiarach dim(Hn)=100×6000, której kolejne kolumny stanowią odpowiedzi impulsowe identyfikowanego systemu niestacjonarnego. Za pomocą
funkcji gain.m zobrazować jak zmienia się maksymalne wzmocnienie systemu o odpowiedzi hn dla kolejnych chwil czasu n. Wytworzyć sygnał wyjściowy y(n) systemu niestacjonarnego przy użyciu funkcji nsfilter.m. Wyznaczyć sygnał odniesienia
d(n) = y(n) + s(n) przyjmując, że zakłócenia s(n) są modelowane białym szumem
gaussowskim o standardowym odchyleniu σs = 0, 5.
2. Dokonać identyfikacji systemu niestacjonarnego za pomocą algorytmu LMS. Przyjąć
następujące parametry: L = 100, α = 0, 003. Następnie powtórzyć jeszcze dwukrotnie ten proces, stosując algorytm RLS i przyjmując następujące wartości stałych:
L = 100, λ1 = 0, 985 dla pierwszego przypadku i λ2 = 0, 999 dla drugiego przypadku.
Po każdorazowym zakończeniu procesu identyfikacji wyznaczyć za pomocą funkcji
delta.m przebieg względnego błędu estymacji δ(n).
3. Na jednym ekranie wykreślić dwa wykresy. Na pierwszym z nich zamieścić przebiegi błędu δ(n) wyznaczone przy wykorzystaniu algorytmu LMS oraz RLS ze stałą λ1 = 0, 985. Na drugim, ponownie przebieg błędu uzyskany z użyciem algorytmu
LMS oraz wykres δ(n) uzyskany przy zastosowaniu filtru RLS ze stałą zapominania
λ2 = 0, 999.
Na podstawie analizy wykreślonych krzywych sformułować odpowiednie wnioski dotyczące
zdolności śledzenia systemów niestacjonarnych przez algorytmy adaptacyjne.
8
LITERATURA
[1] Clarkson P. M.: Optimal and Adaptive Signal Processing. CRC Press, 1993.
[2] Eleftheriou E. and Falconer D. D.: Tracking properties and steady-state performance of RLS adaptive filter algorithms. IEEE Trans. on Acoustic, Speech, and
Signal Processing, vol. ASSP-34, no. 2, October 1986, pp. 1097–1109.
[3] Haykin S.: Adaptive Filter Theory. Englewood Cliffs, New York: Prentice-Hall, 1991.
[4] Widrow B. and Stearns S. D.: Adaptive Signal Processing. Prentice-Hall, Englewood Cliffs, 1985.
9