Kompensacja temperatury dla tensometrów : Teoria i Praktyka

Transkrypt

Kompensacja temperatury dla tensometrów : Teoria i Praktyka
Kompensacja temperatury dla tensometrów : Teoria i Praktyka
Pomiary wykonywane przy użyciu tensometrów w eksperymentalnej analizie naprężeń
mechanicznych pozwalają zbadać obciążenie i zmęczenie materiału. Oprócz pożądanego
sygnału pomiarowego wskazującego mechaniczne odkształcenie, każdy tensometr wytwarza
również zależny od temperatury sygnał pomiarowy. Sygnał ten, zwany pozornym
odkształceniem, jest nakładany na aktualną wartość mierzoną.
Różne efekty przyczyniają się do powstawania odkształceń pozornych:
termiczne wydłużenie mierzonego obiektu ( np. naprężenie spowodowane całkowicie
przez temperaturę bez obciążenia mechanicznego jako przyczyny )
zależna od temperatury zmiana rezystancji tensometru
termiczny skurcz folii drabinki pomiarowej tensometru
odpowiedź termiczna przewodów połączeniowych
Wpływ temperatury może być kompensowany w pomiarach tensometrycznych, na przykład
przez połączenie kilku tensometrów w celu utworzenia pół-, lub pełnego mostka. Takie
podejście sprawia, że ę efekt w formie zwykle używanego obwodu mostka Wheatstone'a,
gdzie naprężenia z różnych tensometrów są odzwierciedlone w sygnale pomiarowym o
przeciwnych znakach (tj. dodatnich i ujemnych) . Poprzez umiejętne połączenie tensometrów
powodujemy, że napięcie mostka będzie reprezentować tylko obciążenia mechaniczne, a
zależne od temperatury efekty będą wzajemnie się znosić .
Kompensacja temperatury w pół-, lub pełnym mostku tensometrycznym nie będą dalej
omawiane w tym artykule. Jego istotę stanowić będzie obecny temat, jakim jest dopasowanie
odpowiedzi termicznej tensometrów. Temat rozważany będzie w oparciu o układ ćwierćmostka tensometrycznego i obejmować będzie wszystkie cztery efekty wymienione powyżej.
Zależne od temperatury pozorne naprężenie może być zmniejszone poprzez dopasowanie
odpowiedzi termicznej.
Dopasowanie odpowiedzi temperaturowej
Pozorne naprężenie, jakie pojawia się przy zmianie temperatury może być reprezentowane w
sposób uproszczony w następujący sposób :
W przypadku, gdy :
s = pozorne odkształcenie tensometru
αr = współczynnik temperaturowy rezystancji folii drabinki tensometru
αb = współczynnik rozszerzalności cieplnej obiektu pomiarowego
αm = współczynnik rozszerzalności cieplnej materiału drabinki pomiarowej tensometru
k = współczynnik tensometru (nazywany stałą k )
Δθ = różnica temperatur, która wyzwala pozorne odkształcenie
W celu zminimalizowania pozornego naprężenia, podczas produkcji tensometrów mogą
zostać wykonane stosowne pomiary. Współczynnik temperaturowy oporu elektrycznego folii
drabinki pomiarowej jest dostosowywany za pomocą technicznych środków produkcji, tak,
aby składniki równania wzajemnie się znosiły, tj.
αr = ( αm - αb ) k .
Zgodnie z tym, występują różne rodzaje tensometrów, które są identyczne pod względem
geometrii i wartości rezystancji , ale różnią się odpowiedzią temperaturową dopasowaną do
materiału, na którym tensometr jest instalowany. Dopasowanie odpowiedzi temperaturowej
jest dostępne dla wielu różnych współczynników rozszerzalności cieplnej (na przykład do
ferrytycznej stali o współczynniku rozszerzalności cieplnej 10,8 10-6/K, lub z aluminium 23
10-6/K). Tensometr jest określany w tym przypadku, jako " tensometr z dostosowanym
współczynnikiem temperaturowym", lub bardziej zwięźle, jako: "tensometr
samokompensujący".
Równanie dla pozornego naprężenia jest uproszczone, zawiera tylko składowe liniowe.
Błędy resztkowe w postaci zmiennych nieliniowych muszą być również brane pod uwagę.
Aby utrzymać błąd tak mały, jak to możliwe, resztkowy błąd dostosowany jest do możliwie
najniższego poziomu w zakresie temperatury pokojowej.
Pozorne naprężenie jest drukowane na każdym opakowaniu tensometrów firmy HBM w
postaci diagramu. Określony jest również wielomian - zazwyczaj jako wielomian trzeciego
stopnia. Wielomian może być stosowany do kompensacji obliczeniowej . Poniższy schemat
pokazuje przykład z opakowania tensometru.
Oczywistym jest, że kompensacja następuje tylko wtedy, gdy współczynnik rozszerzalności
cieplnej materiału pasuje do adaptacji tensometru . Jeśli warunek ten jest spełniony, a
temperatura jest mierzona jednocześnie z odkształceniami, resztkowy błąd może być
usunięty za pomocą obliczeń z odpowiednim oprogramowaniem , albo w czasie pomiaru (
on-line ) lub później (po procesie).
Krzywa pokazuje, że potrzeba kompensacji w celu zmniejszenia zależnych od temperatury
błędów pomiaru zwiększa się, gdy zakres temperatur rośnie. Konwersję należy również
uznać za prawdziwą. Ten rodzaj kompensacji obliczeniowej nie jest konieczny, gdy
temperatura zmienia się nieznacznie w czasie pomiaru, na przykład dlatego, że pomiar jest
bardzo krótkotrwały lub środowisko jest kontrolowane - klimatyzowane.
Kompensacja obliczeniowa błędów resztkowych została przedstawiona poniżej, na
przykładzie pomiaru przy użyciu Catman ® AP - oprogramowania do akwizycji danych .
Kompensacja obliczeniowa
Catman ® AP - oprogramowanie do akwizycji danych umożliwia ustawienie wszystkich
parametrów pomiaru i zaprezentowanie wartości zmierzonych , wszystko za pomocą kilku
kliknięć myszką . Parametry mogą być ustawione aby wskazać w oprogramowaniu
wymaganie dotyczące kompensacji temperatury.
Aby zrealizować kompensację temperatury, do oprogramowania dostarczyć należy dla
każdego kompensowanego kanału następujące informacje:
Odniesienie do odpowiedniego kanału temperatury
Wielomian dla pozornego naprężenia, jaki podano na opakowaniu tensometru
Kanały z identycznymi parametrami dla odpowiedniego kanału temperatury i wielomianu
mogą być traktowane łącznie. Tensometry z tej samej partii produkcyjnej zawsze mają
identyczne wielomiany .
Podczas definiowania kanałów temperatury pamiętaj, że rzeczywista temperatura
materiału musi być mierzona w punkcie pomiarowym . W zależności od zastosowania
konieczne może być wprowadzenie kilku punktów pomiaru temperatury.
W catman ® AP, okno konfiguracji dla tensometru można uzyskać z centralnego panelu
"kanału pomiarowego". Aby to zrobić, zaznacz kanały, które mają być kompensowane
i kliknij prawym przyciskiem myszy , aby otworzyć okno dialogowe "adaptacja czujnika".
Wszystkie ustawienia istotne dla tensometru - zwłaszcza stałej tensometru - mogą być
wykonane w tym oknie konfiguracyjnym.
Inne parametry związane z kompensacją temperatury, które muszą być wprowadzone:
Współczynnik wielomianu (jaki podano na opakowaniu tensometru)
Współczynnik rozszerzalności cieplnej obiektu pomiarowego (najlepiej identyczny z
tym, dla którego jest dopasowany tensometr)
Współczynnik rozszerzalności cieplnej, do której tensometr jest dopasowany (jaki
podano na opakowaniu tensometru)
Temperatura odniesienia (typowo 20 °C)
Odpowiedni kanał temperatury
Oprogramowanie Catman ® AP podaje następnie bezpośrednio, skompensowane wartości
zmierzone.
Wnioski
Kiedy tensometry są stosowane do mechanicznej analizy naprężeń, są często łączone w
układzie obwodu ćwierć- mostka. W pomiarach występują efekty zależności od temperatury,
co doprowadza do zniekształcenia wyników pomiarów.
Aby skompensować te skutki, tensometry są dostępne z dopasowywanymi odpowiedziami
temperaturowymi. To kompensuje przynajmniej liniowe składowe błędu.
Resztkowy błąd, z powodu składników nieliniowych, może być opisany przez krzywą błędu
i wyeliminowany w sposób matematyczny za pomocą oprogramowania.
Aby zapewnić pomyślną minimalizację błędów zależnych od temperatury należy spełnić
następujące warunki:
Współczynnik rozszerzalności cieplnej materiału musi być znany i należy zastosować
odpowiednio dostosowany do niego tensometr
Temperatura w punkcie pomiarowym musi być równolegle mierzona.
Oprogramowanie należy stosować wraz z odpowiednim algorytmem matematycznym
Biuro Inżynierskie Maciej Zajączkowski, ul. Krauthofera 16, PL 60-203 Poznań
Tel./Fax. +48 61 66 25 666, e-mail: [email protected], www: http://www.hbm.com.pl

Podobne dokumenty