wyklad4-Odkrycie oscylacji

Transkrypt

wyklad4-Odkrycie oscylacji
Odkrycie oscylacji neutrin
v  Neutrina słoneczne
v  Neutrina atmosferyczne
Fizyka cząstek II D. Kiełczewska
wykład 4
Solar neutrinos
Solar neutrinos
(another
mystery
of missing
other place
where!!
are neutrinos)
missing
Fizyka cząstek II D. Kiełczewska
wykład 4
„From neutrinos to cosmic sources”, D. Kiełczewska and E. Rondio
Standard Solar Model
Data are compared with
expectations from „SSM” Standard Solar Model:
−
ρ = 1, 4 cmg 3
ρ 0 ≈ 200 cmg 3
− T0 = 15,6 ⋅ 106 K,
TS = 5773 K
− composition: H 34%, He 64%
− age: 4.5 ⋅ 109 years
− 1 au (distance Sun to Earth) 1.5 ⋅1011 m
The model contains also needed
cross sections for neutrino
interactions with nuclei.
Thus eventually its predictions are
given in SNUs:
1 SNU (Solar Neutrino Unit)
= 10-36 nteractions/atom/sec
− R e = 69600 km
− luminosity Le =2.4 ⋅1039
− solar constant K e =
MeV
s
Le
4π (1 au )
2
= 0.849 ⋅1012
Processes producing neutrinos
as a function of distance from
the Sun center:
MeV
cm 2
2Ke
2Ke
− φν =
>
= 6.4 × 1010ν / cm 2s
26.73 − 2 Eν 26.73
Fizyka cząstek II D. Kiełczewska
wykład 4
Solar Neutrino Spectrum
thresholds for different thechniques
radiochemical
(Gallium & Chlorine):
•  low threshold
•  only event rates counte
•  no time information
•  no direction
Cherenkov detectors
Fizyka cząstek II D. Kiełczewska
wykład 4
•  time and direction
•  higher threshold
Radiochemical experiments
First one ever used to detect solar neutrinos Davis-Pontecorvo reaction:
ν e + Cl → e + Ar
37
−
37
or
ν e + 71Ga → e − + 71Ge
Produced isotopes are radioactive with not too long lifetime –
they are periodically extracted and counted
Ø 
No information on time of interactions or neutrino
directions
Ø 
Fizyka cząstek II D. Kiełczewska
wykład 4
Davis experiment at Homestake
615 tons of
C2Cl4
run from 1968
for about 30
years
Nobel prize
for Ray Davis
in 2002
Ø  37Ar has half-life time for electron capture of 35 days
Ø  Argon atoms have to be extracted and counted
- about 1 atom per 2 days
Fizyka cząstek II D. Kiełczewska
wykład 4
Homestake Results:
Rate and flux from single extractions
Only:
( 34 ± 3) %
of SSM
Rate = 0.48 ± 0.16(stat) ± 0.03(syst) argon atoms/day
Flux = 2.56 ± 0.16 ± 0.16 SNU
Fizyka cząstek II D. Kiełczewska
wykład 4
Gallex/GNO and Sage
71
two detectors ν
using
+ reaction
Ga → e −
71
e
Ga (ν e , e − )71 Ge
+ 71Ge
Threshold at 233 keV, dominant way to study p-p neutrinos
SAGE in Caucasus, experiment started with 30 tons of Gallium
next upgraded to 57 tons
Gallium kept in liquid form (melting point 29.8 oC)
Extraction – destillation
Callibrated on added 700 µg of natural Ge (efficiency 80%)
Fizyka cząstek II D. Kiełczewska
wykład 4
Gallex and GNO
v  Counts as a function of time
v  Additional test with isotope
life time
v  Background estimate
v  Calibration of the method with
introduction of known number of
atoms and counting them
v  From this measurement – estimate
of efficiency of the method
Fizyka cząstek II D. Kiełczewska
wykład 4
Results after
extraction
• 
Expected rate
from SSM is:
Measured:
number of neutrino
interactions,
From it derived:
flux of neutrinos from the
Sun reaching the Earth
128+9
SNU
−7
45% of neutrinos are missing?
Fizyka cząstek II D. Kiełczewska
wykład 4
SAGE
Water
Cherenkov
detectors
Ø  Super-Kamiokande
- light water target
Ø  SNO
- heavy water target
BOREXINO,
KAMLAND(2):
Liquid Scintillator
v  directionality
v  time of every event
Fizyka cząstek II D. Kiełczewska
wykład 4
n
Super-Kamiokande: Solar peak > 5 MeV
signal
For E<20 MeV
and ν e
we have only:
background
ν + e− → ν + e−
Fizyka cząstek II D. Kiełczewska
wykład 4
and we know that
electron moves
forward!
Neutrinogram of Sun in SuperKamiokande
The electrons of low energy
undergo many multiple Coulomb
scatterings
Low spacial resolution of the
the actual size of the Sun –
neutrinogram
½ pixel
Fizyka cząstek II D. Kiełczewska
wykład 4
Solar neutrino flux measured in Super-K
Observed:
in 1496 days
Expected:
48,200 events
from SSM
22,400
events
(Standard Solar Model):
a) rate of different fusion processes
b) neutrino cross sections
Hence one obtains:
( in the whole energy
range)
A half of neutrinos are missing?
Fizyka cząstek II D. Kiełczewska
wykład 4
Distribution of electron energy
in Super-K
ν + e− → ν + e−
No modulation of
the spectrum is observed
just the neutrino deficit.
Fizyka cząstek II D. Kiełczewska
wykład 4
Seasonal variation of the signal
Eccentricity of the Earth orbit
measured with the data at SK
(lines represent true
parameters):
68%
Jan....
Jun..
..Dec
with a cut on electron energy>6.5 MeV
to avoid radon bkg seasonal fluctuations
Fizyka cząstek II D. Kiełczewska
wykład 4
95%
99.7%
Clues to the mystery of missing solar
neutrinos
Ø  Deficits are observed in all the experiments
Ø  The fusion reactions in the Sun produce only
νe
Ø  Only electron neutrinos can be measured by
radiochemical experiments
ν e + 37Cl → e− + 37 Ar
ν e + 71Ga → e− + 71Ge
Ø  Super-K measures only ν + e → ν + e because ν e 16O → e − 16 F
It can happen to all neutrino flavors but
Eν > 18 MeV
cross section is 7 times larger for ν e
Ø  But SNO measures much more:
Fizyka cząstek II D. Kiełczewska
wykład 4
Fizyka cząstek II D. Kiełczewska
wykład 4
Results from D2O
SNO
Fizyka cząstek II D. Kiełczewska
wykład 4
Detection of neutrons from: ν x d → ν x n p
With
salt
Fizyka cząstek II D. Kiełczewska
wykład 4
Results from D2O
Fizyka cząstek II D. Kiełczewska
wykład 4
Energy distribution was not used
for the separation of processes
SNO Results
Fizyka cząstek II D. Kiełczewska
wykład 4
SNO fluxes
From event rates to neutrino fluxes:
in units:
× 106 cm-2s-1
84 external-source neutrons
v  Results with salt consistent with
those from pure heavy water
v  Fluxes deduced from different
reactions are inconsistent
v  Only the NC flux agrees with
expectations from SSM
Fizyka cząstek II D. Kiełczewska (Standard Solar Model)
wykład 4
Determination of neutrino fluxes
from SNO measurements
Number of interactions of a neutrino of flavor x:
∞
N x = const ×
∫ ϕ ( E ) σ ( E ) dE
x
ν
x
ν
ν
E0
mass x time-of-exposure
flux
cross section
∞
Assuming the spectrum of 8B neutrinos: f B (Eν ) :
∫f
B
(Eν ) dEν =1
0
( )
ϕ x (Eν ) = Φ x f B Eν
and knowing cross sections one can find:
Fizyka cząstek II D. Kiełczewska
wykład 4
Φx
SNO Results
phase 1+2
ϕ CC = ϕ e
ϕ ES = ϕ e + 0.154 ⋅ ϕ µτ
ϕ NC = ϕ e + ϕ µτ
to compare
Φ SSM = 5.05+−1.0
0.8
with:
Fizyka cząstek II D. Kiełczewska
wykład 4
ν e → ν µ /τ
Hime, Nu06
SNO – final phase
Fizyka cząstek II D. Kiełczewska
wykład 4
Neutron counters in SNO
3
He ( n, p ) t
Counters 2-3 m long.
36 strings on 1x1 m grid
Fizyka cząstek II D. Kiełczewska
wykład 4
Results of all the solar experiments
Fizyka cząstek II D. Kiełczewska
wykład 4
Solar neutrino experiments
Name
Location
Mass
615
Reaction
Homestake
S.Dakota USA
-)37Ar
1968 stopped
SAGE
Galex/GNO
Baksan, Russia
Gran Sasso, Italy
71Ga
(νe,e-)71Ge
71Ga (ν ,e-)71Ge
e
1990 stopped
1992 stopped
Kamiokande
Kamioka, Japan
2000
ν x e- → ν x e-
1986 stopped
Super
Kamiokande
Kamioka, Japan
50000
ν x e- → ν x e-
1996
SNO
Sudbury, Canada
8000
νed→ e- pp
νxd → νx np
ν x e- → ν x e-
1999 stopped
2001 stopped
1999 stopped
Borexino
Gran Sasso, Italy
300
ν x e- → ν x e-
2007
KamLand
Kamioka, Japan
1000
reactor
Fizyka cząstek
II D. Kiełczewska
wykład 4
antineutrinos
50
30
37Cl(ν
e,e
Start
2001
Odkrycie oscylacji neutrin
atmosferycznych w SuperKamiokande
Fizyka cząstek II D. Kiełczewska
wykład 4
Atmospheric Neutrinos
Weak decays are sources of
neutrinos:
Ø π, K mesons decay on the way
to Earth
Ø some muons also decay
but many reach the surface
(mμ=106 MeV; cτ=659 m)
Fizyka cząstek II D.
Kiełczewska wykład 4
Atmosph
Fizyka cząstek II D. Kiełczewska
wykład 4
Neutrino events in Super-K
Contained events:
Fully contained
FC
Partially contained
PC
All have to be separated
from „cosmic” muons
(3Hz)
Upward through-going muons
µ
e/µ
identification
all assumed
to be µ
l  different energy scale
l  different analysis technique
l  different systematics
Fizyka cząstek II D. Kiełczewska
wykład 4
Upward stopping µ
νµ
interactions
in rocks below
the detector
Neutrino energy spectra
Fully contained
FC
Partially contained
PC
µ
e/μ
identification
Upµ thru
all assumed
to be µ
Upµ stop
Fizyka cząstek
II D. Kiełczewskain
Interactions
wykład 4
rocks
νµ
Particle Identification
Hit times are corrected
for Cherenkov photon
time of flight.
e-like:
Ti
electrons
gammas
µ-like:
µ → eν eν µ
Ti
Fizyka cząstek II D. Kiełczewska
wykład 4
mostly
ν e + N1 → e + N 2
π 0 → mostly
2γ
ν µ + N1 → µ + N2
muons
charged pions
protons
Super-K: particle identification
points: DATA
histogram: MC simulation
the variable „PID”
describes how
diffuse a ring is
Fizyka cząstek II D. Kiełczewska
wykład 4
Monte Carlo simulations
The purpose of Monte Carlo simulations is to prepare sample of events
which resemble real data events as much as possible.
MC code considers:
•  Fluxes of ν as functions of energies and angles
•  Interactions of ν depending on their flavor and energy
•  Momenta and types of the particles produced by ν •  Secondary interactions in nuclei (e.g. 16O )
•  Interactions of particles passing through e.g water
•  Simulation of the detector e.g.
•  radiation of Cherenkov photons
•  photon absorption, scattering, reflections
•  probability to produce photoelectrons
•  Reconstruction of simulated events using the same software as for
real data
Monte Carlo samples
Fizyka cząstek II D. Kiełczewska
wykład 4
Super-Kamiokande results (contained)
Sub-GeV (Fully Contained)
Evis < 1.33 GeV,
Pe > 100 MeV, Pµ > 200 MeV
Data
1-ring
e-like
µ-like
3266
3181
Multi-GeV
Fully Contained (Evis > 1.33 GeV)
MC
3081.0
4703.9
1ring
e-like
µ-like
Data
772
664
MC
707.8
968.2
Partially Contained (assigned as µ-like)
913
1230.0
We take ratios to cancel out errors on absolute neutrino fluxes:
RSub
( µ / e) data
( µ / e) data
=
= 0.638 ± 0.016 ± 0.050 RMulti =
= 0.658+−0.030
0.028 ± 0.078
( µ / e) MC
( µ / e) MC
Too few muon neutrinos observed!
Fizyka cząstek II D. Kiełczewska
wykład 4
Super-K I results
- upward going muons
Up through-going µ, (1678days)
Data:
1.7 +- 0.04 +- 0.02 (x10-13 cm-2s-1sr-1)
1.97+-0.44
MC:
Up stopping µ, (1657days)
Data:
MC:
0.41+-0.02+-0.02 (x10-13cm-2s-1sr-1)
0.73+-0.16
Again one observes a muon deficit
Fizyka cząstek II D. Kiełczewska
wykład 4
Double ratios in various experiments
most experiments observed muon deficits
Fizyka cząstek II D. Kiełczewska
wykład 4
Atmosph
Fizyka cząstek II D. Kiełczewska
wykład 4
Zenith angle distributions
e-like
1 ring
µ-like
1 ring
µ-like
multi- ring
upward going
µ
Sub-GeV
Multi-GeV
up
down
Red: MC expectations
Black points: Data
Green: next lectures
Fizyka cząstek II D. Kiełczewska
wykład 4
Missing are the muon
neutrinos passing
through the Earth!
Interpretation of the zenith angle
distributions
Let’s try to find interpretation of the deficit
Of νµ after passing the Earth ......
Looks like νµ disappearance...
What happens to muon neutrinos?
Let’s suppose an oscillation:
ν µ →ν x
but what is
νx
We see that νe angular distribution is as expected
ν x ≠νe
Oscillations of muon neutrinos
Looks like νµ oscillates:..
ν µ → ντ
Remember that we identify neutrinos by the corresponding
charged lepton which they produce:
νµ + N → µ + X
−
ντ + N → τ − + X
But look at the masses:
µ
106 MeV
τ 1777 MeV
Does neutrino have enough
energy to produce τ ?
ντ cross sections
Total CC cross sections for:
ντ + N → τ − + X
ντ + N → τ + + X
compared with νµ
Atmospheric neutrino experiments
The largest statistics of atmospheric neutrino events
were collected in Super-Kamiokande.
The results showed: a deficit of muon neutrinos
passing long distances through the Earth.
first evidence of neutrino oscillatons
Atmospheric neutrinos were also measured in MACRO
and SOUDAN detectors. The results were consistent
with neutrino oscillations.
Fizyka cząstek II D. Kiełczewska
wykład 4

Podobne dokumenty