2. METODY MODELOWE ANALIZY POLA AKUSTYCZNEGO

Transkrypt

2. METODY MODELOWE ANALIZY POLA AKUSTYCZNEGO
2. METODY MODELOWE ...
2.
„Akustyka w budownictwie. …”
METODY MODELOWE ANALIZY POLA
AKUSTYCZNEGO
Problem analizy pola akustycznego nie jest wyczerpany
i pozostaje nadal otwarty. Złożoność zjawisk towarzyszących propagacji fali akustycznej powodują, że próby tworzenia modeli wspomagających projektowanie sal koncertowych, pomieszczeń radiowych,
przegród i osłon akustycznych itp., czy też różnorodne doświadczenia
naukowe, natrafiają na ogromne trudności. Rozwiązaniem tych niedogodności zdają się być metody numeryczne analizy pola akustycznego, które wraz z ciągłym postępem technicznym stają się coraz silniejszym narzędziem badawczym.
W związku z powyższym, oraz mając na uwadze wcześniejsze słowa, chciałbym jeszcze raz podkreślić, iż problemowi modelowania numerycznego zagadnień propagacji fali akustycznej, poświęcam w całości dalszą część pracy, rozpoczynając jednak od krótkiej charakterystyki historycznych i obecnie stosowanych metod i modeli do badania pola akustycznego (Rys. 2.1).
Rys. 2.1. Klasyfikacja modeli do analizy pola akustycznego1
1
klasyfikacja wg prof. Andrzeja Gołasia [9]
7
2. METODY MODELOWE ...
„Akustyka w budownictwie. …”
2.1. MODELE FIZYCZNE
(EKSPERYMENTALNE, ANALOGOWE)
Do grupy tej zaliczamy wszystkie modele materialne.
Zgodnie z Rys. 2.1 wyróżniamy tu: modele pseudoakusyczne (analogowe), bazujące na analogii rozchodzenia się fal w innych ośrodkach
oraz modele akustyczne, wykorzystujące fale dźwiękowe.
2.1.1. MODELE PSEUDOAKUSTYCZNE
2.1.1.1. MODEL WODNY
Modelowanie zjawisk akustycznych przy pomocy fal wodnych należy już do przeszłości, aczkolwiek są one nadal wysoce cenione podczas nauczania szkolnego, ze względu na łatwość prezentacji podstawowych zjawisk falowych. Metoda ta polega na umieszczaniu w płytkim naczyniu wypełnionym wodą przekroju badanego pomieszczenia. Na powierzchni wody, w miejscach gdzie w modelowanym obiekcie znajdują się źródła dźwięku, generowane są przy pomocy wibrujących prętów fale wodne. Fale te, rozchodząc się na powierzchni wody, ulegają odbiciu od ścian przekroju, umożliwiając
,przez analogię, obserwowanie biegu fal akustycznych w danym przekroju pomieszczenia. W doświadczeniach tych obserwujemy wyłącznie
zmiany jakościowe (ugięcie, interferencja), gdyż ilościowe parametry
rozchodzenia się fal akustycznych (poziom mocy, natężenie, pochłanianie) są praktycznie „nieuchwytne”. Inną wadą tej metody jest
również ograniczenie obserwacji zjawisk do analizy w dwóch wymiarach.
2.1.1.2. MODEL ŚWIETLNY
Modelowanie to oparte jest na analogii pomiędzy falami
dźwiękowymi i świetlnymi. Rozróżnia się dwie metody: metodę promieni świetlnych i metodę rozproszenia światła. Wspólnym dla obu
metod jest zjawisko odbicia światła.
Metoda promieni świetlnych, polega na badaniu biegu
promieni świetlnych w modelowanym pomieszczeniu i wnioskowaniu
na tej podstawie o rozchodzeniu się dźwięku. Źródłem promieni,
a więc modelowanym źródłem dźwięku, może być zwykła żarówka.
Powierzchnie pochłaniające modeluje się lustrami, przydymionymi
odpowiednio do wymaganego współczynnika pochłaniania. Odbiornikiem jest fotokomórka umieszczona w miejscu, dla którego chcemy
8
2. METODY MODELOWE ...
„Akustyka w budownictwie. …”
uzyskać informację o poziomie natężenia dźwięku. Przez zmianę natężenia światła, ułożenia i stopnia zadymienia luster można w dowolny sposób modelować warunki akustyczne.
W metodzie rozproszenia światła źródło światła umieszcza
się za ekranem o wąskich szczelinach, uzyskując w ten sposób dużą
liczbę wiązek promieni. Jeżeli wnętrze modelu zostanie wypełnione
dymem, to promienie zostaną uwidocznione. Metoda ta nie uwzględnia pojedynczych odbić, ale daje informację o rozkładzie natężenia
dźwięku w pomieszczeniu.
2.1.2. MODEL AKUSTYCZNY
2.1.2.1. MODEL ULTRADŹWIĘKOWY
Idea modelowania ultradźwiękowego sprowadza się do
możliwości prowadzenia w modelu pomiarów akustycznych, analogicznych do tych jakie prowadzi się w obiekcie rzeczywistym. Modelowanie, oprócz budowy modelu obiektu w danej skali, wymaga modelowania w tej samej skali przetworników elektroakustycznych, pasma częstotliwości i własności pochłaniających materiałów znajdujących się w obiekcie, w tym również powietrza. Jak wskazują źródła
literaturowe ostatni wymóg rzadko jest uwzględniany, ponieważ modelowanie w skali warunków pochłaniających dla fali akustycznej wymaga zmiany czynnika wypełniającego przestrzeń obiektu np. na tlen
lub inny gaz.
Wagę problemu skali uwidoczni następujący przykład.
Najczęściej spotyka się modele w skali od 1:10 do 1:100. Przykładowo dla tej ostatniej wielkości dla pasma od 1 Hz do 10 Hz odpowiada
zakres 100 Hz do 1 kHz , stąd też najczęściej stosujemy modele
o mniejszej skali np. 1:20 ograniczając w ten sposób badane pasmo
do 5 kHz . Oczywiście osobnym problemem są w metodzie ultradźwiękowej takie elementy modelu jak źródło dźwięku, odbiornik oraz materiały pochłaniające, a ten ostatni składnik ze względu na nieliniową charakterystykę częstotliwościową wysuwa się na plan pierwszy.
Mimo niedogodności związanych z problemem skali najlepszym podsumowaniem będą słowa Andrzeja Gołasia zawarte
w książce jego autorstwa „Metody komputerowe w akustyce wnętrz
i środowiska”:
„Modelowanie ultradźwiękowe było i jest szeroko stosowane...”.
9
2. METODY MODELOWE ...
„Akustyka w budownictwie. …”
2.2. MODELE ABSTRAKCYJNE
(TEORETYCZNE)
Do tej grupy należą wszystkie modele, które są pewną
abstrakcją matematyczną, opisującą rzeczywistość. Takie podejście,
jak każde modelowanie, musi zawierać uproszczenia, ponieważ tylko
w ten sposób stworzone przez nas formuły matematyczne stają się
praktyczne w użyciu, chociaż i tak ich rozwiązanie (w ogólnym przypadku) możliwe jest wyłącznie przy zastosowaniu zaawansowanych
technik metod numerycznych.
Modelowanie „abstrakcyjne”, mimo że częstokroć bardzo
czasochłonne, stawia przed projektantami nowe możliwości. Burzliwy
rozwój komputerów oraz ciągłe ulepszanie oprogramowania inżynierskiego pozwalają na rozwiązywanie zadań o praktycznie dowolnym
stopniu trudności. Metody te zezwalają, oczywiście przy założeniu
użycia komputera, by analizowany obiekt przybierał dowolne kształty
(nawet „nieskończone” w metodzie elementów skończonych), dowolnie złożone są również warunki brzegowe i początkowe.
Problematykę modelowania numerycznego przedstawię
szczegółowo w następnych rozdziałach.
2.2.1. MODELE GEOMETRYCZNE
Główne założenie modeli geometrycznych bazuje na prostoliniowej propagacji tzw. promienia dźwiękowego i jego odbiciu
zgodnie z prawami odbicia od płaskiej powierzchni o nieskończonych
wymiarach. Należy jednak zwrócić uwagę, że teoria ta zawodzi
w przypadku fal o niskich częstotliwościach (gdy długość fali porównywalna jest z wymiarami powierzchni odbijającej) i dla fal o częstotliwościach wysokich (gdy długość fali jest rzędu wymiaru struktur
zewnętrznych powierzchni odbijającej).
2.2.1.1. METODA PROMIENIOWA
W metodzie tej ciągłą falę akustyczną rozważa się jako
dyskretny zbiór tzw. promieni dźwiękowych, rozprzestrzeniających się
z prędkością propagacji dźwięku i niosących jednakową część energii
emitowanej przez źródło. Energia ta jest tracona w kolejnych odbiciach, proporcjonalnie do współczynnika pochłaniania dźwięku danej
powierzchni brzegowej. Spadek energii spowodowany odległością od
źródła jest uwzględniony przez zmniejszenie się wraz ze wzrostem
odległości liczby promieni docierających do odbiornika, modelowanego jako strefę. Odpowiedź wnętrza uzyskuje się poprzez uśrednienie
10
2. METODY MODELOWE ...
„Akustyka w budownictwie. …”
w obszarze obserwacji wszystkich danych związanych
szczególnych promieni dźwiękowych.
z energią po-
2.2.1.2. METODA ŹRÓDEŁ POZORNYCH
W metodzie tej źródła dźwięku i układ ograniczający wnętrze zastępuje się siatką pozornych źródeł dźwięku. Źródła pozorne
tworzone są w ten sposób, iż każdej fali akustycznej dochodzącej do
punktu obserwacji ze źródła rzeczywistego, (po odbiciach), odpowiada
oddzielne źródło pozorne.
2.2.2. MODEL STATYSTYCZNY
Model ten powstał według statystycznej teorii pola akustycznego, której twórcą jest W.C. Sabine (1900). Nazwa metody bierze się stąd, iż operuje ona pojęciami statystycznymi takimi jak:
średnia długość drogi swobodnej fali akustycznej, średni czas itp. Zakłada się w niej, że gęstość energii dźwiękowej w każdym punkcie
pomieszczenia jest równa i że prawdopodobieństwo padania fali
dźwiękowej jest jednakowe we wszystkich kierunkach. Jedną z najsłynniejszych zależności matematycznych tej metody jest wzór na
czas pogłosu T pomieszczenia
T=
0,16V
[s ] ,
S α śr
gdzie:
[ ]
V - objętość pomieszczenia m 3 ,
S
[ ]
- pole powierzchni pomieszczenia m 2 ,
α śr - średni pogłosowy współczynnik pochłaniania dźwięku [−].
2.2.3 MODELE FALOWE
2.2.3.1. METODA FALOWA
Metoda ta bazuje na analitycznym rozwiązaniu równania
falowego, a więc równania różniczkowego cząstkowego. Skomplikowane warunki brzegowe i początkowe, wyznaczają granicę stosowal-
11
2. METODY MODELOWE ...
„Akustyka w budownictwie. …”
ności tej metody do geometrii o najprostszych kształtach, jednolitych
warunków na brzegu oraz wymuszenia harmonicznego. Dla tak postawionego problemu możliwe jest uzyskanie podstawowych wyników
takich jak częstości i postaci drgań własnych, mody drgań wymuszonych itp.
2.2.3.2. METODA ELEMENTÓW SKOŃCZONYCH – MES
W metodzie tej analizowana przestrzeń poddawana jest
dyskretyzacji – podziałowi na elementy skończone, które tworzą
tzw. siatkę elementów. Rozwiązanie problemu uzyskujemy dla wybranych punktów, zwanych węzłami siatki, które następnie poprzez
funkcje kształtu (interpolujące) „rozpinamy” na cały badany obszar.
Znaczenie MESu, (wciąż niesłabnące), w analizie różnorodnych zjawisk fizycznych jest nieocenione. Dzięki tej metodzie potrafimy niemal bezbłędnie - w szczegółach(!) - oceniać, interpretować
zjawiska o najwyższym stopniu trudności (tzn. dowolna geometria,
dowolne warunki brzegowe i początkowe).
12