Masterflow -

Transkrypt

Masterflow -
Masterflow®
Zaprawy zalewowe
do turbin wiatrowych
nazwa pliku: Masterflow_turbiny_v06
data zapisu pliku: 10 października 2013 16:05
strona: 1
Ludzkość wykorzystuje energię wiatru od ponad 5000 lat, lecz pierwszą turbinę wiatrową służącą
do produkcji energii elektrycznej zbudowano dopiero w roku 1888 w stanie Ohio, USA. Obecnie wiatr
jest istotnym źródłem energii odnawialnej, a turbiny wiatrowe stały się ważnymi środkami produkcji
energii elektrycznej.
Światowy rynek energii wiatru wykazuje przeciętne tempo wzrostu na poziomie około 25% w ciągu
ostatnich 5 – 10 lat i będzie dalej rósł w tak wysokim tempie w latach nadchodzących.
Dla przykładu, Unia Europejska ustaliła wiążący cel przewidujący, iż do roku 2020 około 20% całości
wytwarzanej energii będzie stanowić energia odnawialna oraz, że gazy cieplarniane zostaną zredukowane o 20%. Jako jedno ze źródeł energii odnawialnej, energia wiatrowa wnosi trwały i znaczący wkład
w ogólnoświatowe zaopatrzenie w energię elektryczną.
Stosowanie turbin wiatrowych na szeroką skalę rozpoczęło się Danii, gdzie opracowano nowe technologie, zaczęto instalować większe turbiny oraz budować farmy wiatrowe nie tylko na lądzie. Od około
10 lat turbiny wiatrowe instalowane są również w morskich parkach wiatrowych, ponieważ na obszarach
morskich wiatr wieje silniej i w sposób bardziej stały niż na lądzie.
Bezpieczeństwo i trwałość instalacji turbin wiatrowych w dużym stopniu zależy od wysokiej jakości
materiałów budowlanych, które łączą wieżę z jej podstawą / fundamentem.
nazwa pliku: Masterflow_turbiny_v06
data zapisu pliku: 10 października 2013 16:05
strona: 2
Energia z turbin wiatrowych
nazwa pliku: Masterflow_turbiny_v06
data zapisu pliku: 10 października 2013 16:05
strona: 3
Wyzwania montażowe
Turbiny wiatrowe są wysokimi, smukłymi budowlami narażonymi w sposób dynamiczny na wysokie
obciążenia od wiatru oraz na inne naprężenia eksploatacyjne. Współpraca maszyn z przenoszącymi
obciążenia elementami instalacji, tj. wieżą, fundamentem i kotwami, wymaga szczególnej uwagi przy
projektowaniu turbin wiatrowych.
Przybrzeżno-lądowe instalacje turbin wiatrowych
We wczesnych projektach przybrzeżno-lądowych instalacji turbin wiatrowych wieże były bezpośrednio
mocowane do betonu za pomocą kotew jedno-lub dwukołnierzowych. Wszystkie obciążenia oddziałujące na konstrukcję są przenoszone bezpośrednio z wieży na fundament z betonu zbrojonego. Ponieważ
takie konstrukcje nie są sprężone, występują w nich wysokie amplitudy naprężeń, które mogą prowadzić
do obszernych spękań oraz/lub rozwarstwień betonu.
W bardziej aktualnych projektach turbin wiatrowych, uważanych za bardziej trwałe i niezawodne, stosuje
się pierścienie sprężone lub połączenia teownikowe, którymi można kontrolować amplitudy naprężeń.
Cementowe zaprawy zalewowe, stosowane do wypełniania szczelin pomiędzy kołnierzem a fundamentem, muszą być precyzyjnie dobierane. Zaprawa podlega milionom obciążeń dynamicznych w okresie eksploatacji konstrukcji turbiny wiatrowej. Wszelkie wady występujące pod kołnierzem, np. obszary
puste, będą w związku z tym prowadziły do gwałtownego wzrostu ilości odkształceń oraz ryzyka awarii
konstrukcji.
Zaprawy wykazujące słabą wytrzymałość na obciążenia dynamiczne, nie wypełniające całkowicie przestrzeni, prowadzą w końcu do przedwczesnego załamania się konstrukcji.
Morskie instalacje turbin wiatrowych
Morskie instalacje turbin wiatrowych są generalnie dużo większe i narażone na wiele wyższe obciążenia dynamiczne. Staranny projekt i dobór cementowych zapraw zalewowych ma kluczowe znaczenie. Ostatnio pojawiły się pewne problemy z fundamentami jednosłupowymi. W niektórych morskich
farmach wiatrowych stwierdzono występowanie przesunięć w połączeniach zalewanych zaprawami
cementowymi pomiędzy jednosłupem a elementem przejściowym. Przyczyna tej usterki wydaje się
leżeć w niewłaściwym sposobie zaprojektowania oraz w niewłaściwej współpracy pomiędzy fundamentem a zaprawą zalewową.
Wieża mocowana bezpośrednio do betonu za pomocą kotew
jedno-lub dwukołnierzowych.
Pękanie betonu z uwagi na niewłaściwy sposób zaprojektowania oraz wysokie obciążenia dynamiczne oddziałujące
na fundament.
Wieże instalowane z wykorzystaniem betonu i sprężania.
Pękanie zaprawy w wyniku wysokiego skurczu przy schnięciu.
Oderwanie się zaprawy z powodu niewłaściwego doboru
materiału, nie odpornego na wysokie obciążenia dynamiczne.
W okresie eksploatacji instalacje turbin wiatrowych podlegają milionom obciążeń dynamicznych powodowanych przez wiatr oraz/ lub oddziaływanie fal, a także przez obroty łopatek wirnika. Dodatkowo
do tych obciążeń dynamicznych, te gigantyczne konstrukcje o masie kilkuset ton wytwarzają również
duże obciążenia osiowe działające na fundamenty.
Najbardziej istotne obciążenia oddziałujące na konstrukcję turbiny wiatrowej to:
• Obciążenia osiowe
• Drgania (nie pokazane na ilustracji)
• Ruch obrotowy
• Zginanie
• Skręcanie
Wszystkie te obciążenia muszą być amortyzowane / przenoszone przez zaprawę zalewową łączącą
wieżę z konstrukcją fundamentu.
Ruch
obrotowy
Zginanie
Skręcanie
Obciążenia
osiowe
Przenoszenie obciążeń
nazwa pliku: Masterflow_turbiny_v06
data zapisu pliku: 10 października 2013 16:05
strona: 4
Ekstremalne obciążenia dynamiczne
Aby sprostać wymaganiom rynkowym oraz spełnić ambitne cele przemysłu, rosną rozmiary oraz wydajność turbin wiatrowych, a jednocześnie buduje się coraz więcej turbin na morskich farmach wiatrowych.
Z uwagi na to powstało zapotrzebowanie na cementowe zaprawy zalewowe wyższej jakości, które
można szybciej aplikować skracając terminy prac budowlanych.
Tylko wysoce trwałe materiały gwarantują projektowy okres eksploatacyjny tych coraz większych konstrukcji turbin, które podlegają ciągłym, jeszcze wyższym obciążeniom dynamicznym.
Trwałość w przemyśle energetyki wiatrowej jest głównie określana przez:
• Odporność na zmęczenie materiału: jest to odporność na postępujące, miejscowe uszkodzenia konstrukcji występujące wówczas, gdy materiał poddawany jest powtarzającym się cyklom obciążeniowym. Nominalne maksymalne wartości naprężeń są niższe od granicznego naprężenia niszczącego
– mogą znajdować się poniżej granicy plastyczności materiału. Zmęczenie materiału występuje wówczas, gdy materiał podlega powtarzającym się cyklom obciążeń. Kiedy obciążenia przekroczą pewną
wartość progową, zaczynają się tworzyć mikroskopijne spękania. W końcu pęknięcie dojdzie do wielkości krytycznej i konstrukcja ulegnie nagłemu załamaniu.
• Wytrzymałość: jest to odporność na pęknięcie materiału znajdującego się pod obciążeniem.
Określana jest jako ilość energii na jednostkę objętości, jaką materiał może wytrzymać przed zerwaniem. Materiał może być mocny i posiadać odpowiednią wytrzymałość, jeżeli ulega zerwaniu dopiero
pod działaniem wysokich sił powodujących wysokie odkształcenia. Z drugiej strony materiały kruche mogą być mocne, a jednocześnie posiadać ograniczone wartości odkształceniowe – a więc ich
wytrzymałość jest słaba. Ogólnie rzecz biorąc, wytrzymałość wskazuje wielkość siły, jaką dany materiał może wytrzymać, oraz ilość energii, jaką materiał może pochłonąć przed zerwaniem. Inna definicja mówi nam, iż jest to zdolność do pochłaniania energii mechanicznej (lub kinetycznej) aż do zerwania. Wytrzymałość wskazuje nam zakreskowany obszar znajdujący się pod krzywą naprężenia /
odkształcenia.
• Stabilność objętościowa: zmiany objętościowe zapraw zalewowych wywierają negatywny wpływ
na przewidywaną trwałość instalacji turbin wiatrowych. Zaprawy zalewowe stanowią kluczowe ogniwo
wiążące wieżę z fundamentem, ponieważ muszą one absorbować i przenosić wszystkie obciążenia
występujące w konstrukcji. Skurcz przy schnięciu, skurcz samoczynny, rozszerzanie się lub każda
inna postać niestabilności objętościowej zapraw zalewowych ma decydujące znaczenie dla okresu
eksploatacji turbiny wiatrowej.
1
0.9
Odporny na zmęczenie
0.8
0.7
Naprężenie (MPa)
Maks. naprężenie względne (MPa)
nazwa pliku: Masterflow_turbiny_v06
data zapisu pliku: 10 października 2013 16:05
strona: 5
Parametry jakościowe
0.6
0.5
0.4
Nieodporny na zmęczenie
0.3
0.2
Wytrzymałość
0.1
0
0
1
2
3
4
5
6
7
log (ilość cykli)
DNV - liniowa reguła kalkulacji
Zmęczenie materiału według wytycznej morskiej DNV C502
Odkształcenie (%)
Wytrzymałość: Krzywa Naprężenie / Odkształcenie
Ponadto, turbiny wiatrowe są bardzo często instalowane w trudnych środowiskach, które wymagają stosowania zapraw zalewowych umożliwiających szybki, a jednocześnie bezpieczny montaż.
W związku z tym jest niezmiernie istotne, by zaprawa wykazywała wysoką wytrzymałość początkową
i końcową nawet w warunkach obniżonych temperatur. Jest to jeszcze ważniejsze w przypadku instalacji morskich montowanych w wodzie na dużych głębokościach, gdzie występowanie tzw. okienek pogodowych może ograniczać czas potrzebny na prace budowlane, ostatecznie opóźniając termin rozruchu
morskich urządzeń do produkcji energii elektrycznej.
nazwa pliku: Masterflow_turbiny_v06
data zapisu pliku: 10 października 2013 16:05
strona: 6
Instalacje przybrzeżno-lądowe:
Masterflow® 9300
Masterflow 9300 jest to super wysokiej wytrzymałości, odporna na zmęczenie materiału ekspansywna
zaprawa zalewowa na bazie cementu z kruszywem metalicznym do stosowania w przybrzeżno-lądowych instalacjach turbin wiatrowych.
Materiał ten został opracowany szczególnie dla:
• Podlewek w instalacjach turbin wiatrowych, np. pod pierścieniem lub kołnierzem wieży sprężonej
• Podlewek w bardzo trudnych warunkach, np. zakresie w temperatur już od 2 ºC do 30 ºC
• Wypełniania wszystkich kawern od 30 mm do 200 mm, gdzie istotne znaczenie ma wysoka wytrzymałość, odporność na zmęczenie materiału oraz wysoki moduł sprężystości.
Znakomita trwałość
wytrzymałość na obciążenia dynamiczne
• Zawiera kruszywo metaliczne
• Brak skurczu samoczynnego, zapewniający
długoterminowe przenoszenie obciążeń
• Znakomita wytrzymałość na ścieranie
1
Maks. naprężenie względne
• Wysoka odporność na zmęczenie materiału,
• Wysoka wytrzymałość
0,9
0,8
0,7
0.6
0,5
(1)
0,4
0,3
w powietrzu przy 10 Hz
0,2
w powietrzu przy 10 Hz
0,1
DNV - liniowa reguła kalkulacji
0
0
• Bardzo niska porowatość
• Odporność na cykle zamrażania/rozmrażania
w powietrzu przy 10 Hz
1
2
3
4
5
6
7
log (ilość cykli)
Uwaga (1) Próbki wytrzymały test. Test przerwano z uwagi na zbyt dużą ilość cykli.
Odporność na zmęczenie zaprawy Masterflow 9300
• Wysoka wytrzymałość początkowa i końcowa,
umożliwiająca szybkie kotwienie
• Szybki montaż, krótszy okres przestoju
• Szybsza produkcja energii
• Niezależne testy przeprowadzone
na Uniwersytecie w Aalborg
• Montaż przez autoryzowane firmy
160
Wytrzymałość na ściskanie (MPa)
Szybki, bezpieczny i efektywny kosztowo montaż
140
120
100
80
60
Masterflow 9300 w 20 °C
40
Masterflow 9300 w 5 °C
Masterflow 885 w 20 °C
20
Podlewka w 20 °C
0
1
10
19
28
37
46
55
64
73
Czas (dni)
Przebieg wzrostu wytrzymałości na ściskanie
82
91
100
Masterflow 9500 jest to super wysokiej wytrzymałości, o wysokim module sprężystości, odporna
na zmęczenie materiału ekspansywna zaprawa zalewowa na bazie cementu do stosowania w morskich
instalacjach turbin wiatrowych.
Materiał ten został opracowany specjalnie dla wielkoskalowych urządzeń pompujących:
• Podlewki instalacji turbin wiatrowych, gdzie wymagana jest znakomita odporność na zmęczenie materiału, np. połączenia pomiędzy fundamentami jednosłupowymi a elementami przejściowymi wież
wiatrowych.
• Podlewki w bardzo trudnych warunkach, np. zastosowania morskie lub prace podwodne w niskich
temperaturach dochodzących do 2 ºC.
• Wypełnianie wszystkich kawern od 25 mm do 200 mm, gdzie istotne znaczenie ma wysoka wytrzymałość i odporność na zmęczenie materiału, np. w przypadku fundamentów grawitacyjnych.
• Wysoka odporność na zmęczenie materiału,
pochłanianie obciążeń dynamicznych
• Zerowy skurcz samoczynny zapewniający długoterminowe przenoszenie obciążeń
• Zdolność do wytrzymywania ultra wysokich
obciążeń osiowych
• Bardzo niska porowatość
Maks. naprężenie względne (MPa)
Znakomita trwałość
1
0,9
0,8
0,7
0,6
0,5
tracji przez sole
Szybki, bezpieczny i efektywny kosztowo montaż
• Bardzo szybki wzrost wytrzymałości, nawet
w niskich temperaturach
• Wysoka wytrzymałość końcowa
• Krótki czas montażu, wcześniejsze rozpoczęcie eksploatacji farmy wiatrowej
• Szybsza produkcja energii, wcześniejszy
zwrot zainwestowanego kapitału
• Montaż przez autoryzowane firmy
w powietrzu przy 10 Hz
0,3
w wodzie przy 0,35 Hz
0,2
w powietrzu przy 10 Hz
0,1
w wodzie przy 0,35 Hz
0
• Odporność na cykle zamrażania/rozmrażania
• Bardzo niski stopień wchłaniania wody, pene-
DNV - liniowa reguła kalkulacji
0,4
0
1
2
3
4
5
6
7
log (ilość cykli)
Uwaga:
Próbki wytrzymały test. Test przerwano z uwagi na zbyt dużą ilość cykli.
Odporność na zmęczenie zaprawy Masterflow 9500
160
Wytrzymałość na ściskanie (MPa)
nazwa pliku: Masterflow_turbiny_v06
data zapisu pliku: 10 października 2013 16:05
strona: 7
Instalacje morskie: Masterflow® 9500
140
120
100
80
60
Masterflow 9500 20 °C
Masterflow 9500 12 °C
40
Masterflow 9500 5 °C
Podlewka (zast. morskie) 20 °C
20
Podlewka (zast. morskie) 5 °C
0
1
7
Czas (dni)
Przebieg wzrostu wytrzymałości na ściskanie
28
nazwa pliku: Masterflow_turbiny_v06
data zapisu pliku: 10 października 2013 16:05
strona: 8
Inteligentne rozwiązania BASF
Każdy problem budowlany w każdej konstrukcji inżynierskiej można rozwiązać lepiej
dzięki inteligentnym rozwiązaniom koncernu BASF.
Nasze marki - liderzy na rynku - oferują największy wybór sprawdzonych technologii,
które pomagają budować lepszy świat.
CONIDECK® - systemy membran wodoszczelnych
EMACO® - systemy naprawcze do betonu
MultiTherm® - systemy ociepleń
BASF Polska Sp. z o.o.
Dział E-EBR/Chemia Budowlana
ul. Wiosenna 12
63 - 100 Śrem
tel. 61 636 63 00
faks 61 636 63 21
www.basf-cc.pl
[email protected]
MASTERFLOW® - masy zalewowe precyzyjne i strukturalne
MASTERFLEX® - materiały uszczelniające do spoinowania
MASTERSEAL® - powłoki ochronne i uszczelnienia przeciwwodne
MASTERTOP® - dekoracyjne i przemysłowe systemy posadzkowe
PCI® - materiały do wyklejania płytek, podkłady cementowe oraz systemy uszczelnień
przeciwwodnych
Prince Color® - systemy ociepleń, materiały do wyklejania płytek, fugi, zaprawy,
UCRETE® - systemy posadzkowe o wysokiej wytrzymałości
Stan: wrzesień 2011. Wydanie: październik 2013.
jastrychy, tynki renowacyjne