Kinematyka - Strefa.pl

Transkrypt

Kinematyka - Strefa.pl
1. Kinematyka
1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.
1.10.
1.11.
1.12.
1.13.
1.14.
Samochód pokonał trasę z miejscowości A do miejscowości B w ciągu 1 godziny i 20 minut. Jaka
była średnia prędkość samochodu na tej trasie, jeśli wiadomo, że długość drogi między
miejscowościami A i B wynosi 96 km?
Pierwszą połowę drogi pojazd przebył z prędkością v1 a drugą z prędkością v2. Obliczyć średnią
prędkość pojazdu na trasie. Obliczenia numeryczne wykonać dla, v1 72 km h , v1 90 km h .
Na wykresie prędkości przedstawić geometrycznie drogę przebytą przez pojazd.
Biegacz przebiegł połowę trasy z prędkością v1 18 km h , a drugą połowę z inną prędkością v2.
Gdyby biegł cały czas ze stałą prędkością v 12 km h to czas potrzebny na przebycie całej trasy
nie zmieniłby się. Oblicz wartość prędkości v2.
Pociągi A i B jadą po sąsiednich torach z prędkościami odpowiednio v A i vB. Oblicz prędkość
względną pociągu B względem A, gdy pociągi poruszają się a) w przeciwne strony, b) w tę samą
stronę. Obliczenia numeryczne wykonać dla vA 60 km h , v B 80 km h .
Łódź płynie z prądem rzeki z przystani A do B w czasie t1 3h , a z B do A w czasie t2 6h . Ile
czasu trzeba, aby łódź spłynęła z przystani A do B z wyłączonym silnikiem?
Prędkość łodzi względem wody w spoczynku wynosi v1. Woda płynie w rzece z prędkością v2.
Jak należy skierować łódź, aby przepłynąć rzekę w kierunku prostopadłym do brzegów? W jakim
czasie łódź przepłynie rzekę o szerokości L? Przedstaw graficznie układ prędkości. Obliczenia
numeryczne wykonaj dla v1 5 m s , v2 3 m s , L 80 m .
Z jaką największą prędkością może iść podczas deszczu człowiek, tak aby deszcz nie padał mu na
nogi, jeżeli człowiek ten trzyma parasol, którego brzeg znajduje się na wysokości h 2m i w
odległości d 0,3 m przed człowiekiem? Krople deszczu spadają pionowo z prędkością
vd 8 m s .
1
2
Motocyklista przejechał
drogi z prędkością v1 10 m s i pozostałe
drogi z prędkością
3
3
v2 20 m s . Znaleźć średnią prędkość motocyklisty na całym odcinku drogi.
Biegacz przebiegł dwie trzecie trasy z prędkością v1 18 km h , a pozostałą część z inną
prędkością v2. Gdyby biegł cały czas ze stałą prędkością v 12 km h to czas potrzebny na
przebycie całej trasy nie zmieniłby się. Oblicz wartość prędkości v2.
Pasażer pociągu elektrycznego, poruszającego się z szybkością v1 15 m s , zauważył, że drugi
pociąg o długości d 210 m (jadący w przeciwnym kierunku) minął go w czasie t 6 s . Znaleźć
prędkość v2 drugiego pociągu.
Znaleźć prędkość motorówki na stojącej wodzie, jeżeli podczas ruchu z prądem rzeki szybkość tej
motorówki względem brzegu wynosi v1 10 m s a podczas ruchu pod prąd v2 6 m s . Jaka jest
prędkość vp prądu wody w rzece?
Samochody A i B jadą, w kierunkach wzajemnie prostopadłych, w stronę tego samego
skrzyżowania z prędkościami odpowiednio: vA 60 km h i v B 80 km h . Oblicz prędkość
względną samochodu B względem A. Wykonaj rysunek zaznaczając odpowiednie wektory
prędkości.
Samolot leci z miasta A do miasta B, położonego względem A o s 2160km na wschód.
Prędkość samolotu względem powietrza wynosi v1 720 km h . Obliczyć czasy przelotu: ta - przy
bezwietrznej pogodzie oraz tb - gdy na całej trasie wieje wiatr z południa na północ z prędkością
v2 25 m s . Wykonać rysunki.
Motocyklista rusza ze stałym przyspieszeniem a 0,5 m s 2 . Po 0,6 min od chwili rozpoczęcia
ruchu zatrzymuje go policjant. Czy motocyklista będzie musiał zapłacić mandat z powodu
przekroczenia dozwolonej prędkości 60 km/h?
1
1.15.
1.16.
1.17.
1.18.
1.19.
1.20.
1.21.
1.22.
1.23.
1.24.
1.25.
1.26.
1.27.
1.28.
1.29.
Aby móc oderwać się od ziemi samolot musi osiągnąć prędkość v 100 m s . Znaleźć czas
rozbiegu i przyspieszenie samolotu, jeżeli długość rozbiegu wynosi d 600 m . Założyć, że ruch
samolotu jest jednostajnie zmienny.
Samochód porusza się z prędkością v1 25 m s . Na drodze s 40 m jest hamowany i zmniejsza
swą prędkość do v 2 15 m s . Zakładając, że ruch samochodu jest jednostajnie zmienny, znaleźć
przyspieszenie i czas hamowania.
W czasie t prędkość v0 poruszającego się ciała wzrosła n razy. Oblicz stałe przyspieszenie ciała,
prędkość średnią oraz drogę przebytą przez ciało w czasie t. Obliczenia numeryczne wykonaj dla
v 0 5 m s , t 8 s , n 5 . Na wykresie prędkości przedstaw graficznie drogę przebytą przez ciało
w czasie t.
W ruchu prostoliniowym prędkość ciała jest następującą funkcją czasu: v 6 t 2 [m s] . a)
Określ ruch ciała. b) Oblicz drogę przebytą przez ciało w czasie t 2 s .
Dwa samochody jechały jednakowo długo. Pierwszy z nich połowę czasu jechał z
przyspieszeniem a a drugą połowę czasu z przyspieszeniem 2a. Drugi z kolei pierwszą połowę
czasu jechał z przyspieszeniem 2a a drugą z przyspieszeniem a. Który z nich przebył dłuższą
drogę? Przedstaw tę drogę na wykresie prędkości w funkcji czasu.
Zależność drogi s przebytej przez ciało od czasu t w ruchu prostoliniowym podaje równanie
s A t B t 2 C t 3 [m] , gdzie A 2 m s , B 3 m s 2 , C 4 m s3 . Znaleźć: a) zależność
prędkości v i przyspieszenia a od czasu t; b) drogę przebytą przez ciało oraz prędkość i
przyspieszenie ciała po upływie 2s od rozpoczęcia ruchu.
Dwa ciała poruszają się ruchem jednostajnie przyspieszonym. Stosunek ich przyspieszeń wynosi
2:3, stosunek czasów trwania ich ruchu jest 3:4. W jakim stosunku pozostają drogi przebyte przez
te ciała?
Samochód jadący z prędkością v0 36 km h w pewnej chwili zaczął hamować tak, że zatrzymał
się po upływie t 2 s . Zakładając, że ruch samochodu był jednostajnie zmienny, wyznacz
przyspieszenie a samochodu oraz drogę s, jaką przebył on od chwili rozpoczęcia hamowania.
Znaleźć czas wznoszenia się windy, zakładając, że jej ruch podczas ruszania i hamowania jest
jednostajnie zmienny o przyspieszeniu równym, co do wartości bezwzględnej a 1 m s 2 , a na
środkowym odcinku drogi jej ruch jest jednostajny z prędkością v 2 m s . Wysokość, na jaką
wznosi się winda h 60 m . Sporządzić wykres prędkości windy od czasu trwania jej ruchu.
W ruchu prostoliniowym zależność drogi przebytej przez ciało od czasu jest: s 3t 2 2t [m] . a)
Określ ruch ciała. b) Oblicz prędkość ciała po przebyciu drogi d 16 m .
Dwa samochody jechały jednakowo długo. Pierwszy z nich połowę czasu jechał z
przyspieszeniem a a drugą 3a. Drugi z kolei pierwszą połowę czasu jechał z przyspieszeniem 2a
a drugą z przyspieszeniem a. Który z nich przebył dłuższą drogę? Który z nich osiągnął większą
prędkość końcową?
Ciało spada z wieży. W chwili t0, gdy przebyło ono drogę równą d, z punktu położonego o h niżej
od wierzchołka wieży zaczęło spadać drugie ciało. Oba ciała spadają na ziemię w tej samej chwili.
2
Wykazać, że wysokość wieży jest równa H ( d4 dh ) .
Spadające swobodnie ciało pokonało w czasie pierwszych dwóch sekund 1/2 całej drogi. Znajdź
wysokość z jakiej spadło to ciało. Przyjmij przyspieszenie ziemskie g 10 m s 2 .
Ciało spada swobodnie z wysokości h 10 m . Z jaką prędkością v ciało uderzy o ziemię? Na
jakiej wysokości h1 prędkość ciała będzie równa połowie prędkości końcowej? Przyjmij wartość
przyspieszenia ziemskiego g 10 m s 2 .
Ciało spadające swobodnie ma w punkcie A prędkość vA 40 cm s , a w punkcie B prędkość
vB 250 cm s . Obliczyć odległość między punktami A i B. Przyjmij g 10 m s 2 .
2
1.30.
Spadający swobodnie kamień ma w punkcie A prędkość v A 6 m s . Jaką prędkość będzie on
miał w punkcie B położonym o L 10 m poniżej punktu A (przyspieszenie ziemskie
g 10 m s 2 )?
1.31.
Ciało spada swobodnie na ziemię z wysokości H. Na jakiej wysokości prędkość tego ciała będzie
n razy mniejsza od jego prędkości końcowej? Obliczenia numeryczne wykonaj dla H 27 m ,
n 3.
1.32.
W urządzeniu kafarowym służącym do wbijania pali ruchomy ciężar podnoszony jest ruchem
jednostajnym na wysokość 4,9 m z prędkością 0,98 m/s, a następnie spada swobodnie na pal.
Znaleźć liczbę uderzeń ciężaru na minutę. Przyjmij g 9,8 m s 2 .
1.33.
W jakim czasie swobodnie spadające ciało przebędzie n-ty metr swojej drogi?
Wskazówka: Przedstaw drogę przebytą przez ciało w postaci następującego iloczynu: sn
gdzie d 1m .
n d,
1.34.
Znaleźć prędkość początkową, z jaką wyrzucono ciało pionowo do góry, jeżeli na wysokości
h 15m (licząc od punktu wyrzucenia ciała) znajdowało się ono dwukrotnie w odstępie czasu
t 2 s . Nie uwzględniać oporu powietrza. Przyjąć przyspieszenie ziemskie równe g 10 m s 2 .
1.35.
W rzucie poziomym prędkość końcowa ciała jest n = 3 razy większa od prędkości początkowej.
Prędkość początkowa ciała wynosi v0 9,8 m s . Obliczyć wysokość początkową rzutu.
Przyspieszenie ziemskie g
9,8 m s 2 .
1.36.
Kula pistoletowa wystrzelona poziomo przebiła dwie pionowo ustawione kartki papieru,
umieszczone w odległościach l1 20 m i l2 30 m od pistoletu. Różnica wysokości na jakich
znajdują się otwory w kartkach wynosi h = 5 cm. Oblicz prędkość początkową kuli.
Przyspieszenie ziemskie g 10 m s 2 .
1.37.
Z wierzchołka góry wyrzucono ciało w kierunku poziomym z prędkością v0 19,6 m s . Znaleźć
składowe wektora przyspieszenia, styczną i normalną do toru, po czasie t 2 s od chwili
wyrzucenia. Przyjmij g 9,8 m s 2 .
1.38.
Jaki powinien być czas opóźnienia zapłonu granatu wyrzuconego z prędkością v0 pod kątem do
poziomu, aby wybuch nastąpił w najwyższym punkcie toru? Przyspieszenie ziemskie g jest dane.
1.39.
Kamień rzucono pod kątem do poziomu nadając mu prędkość początkową v 0 8 m s .
a) Narysuj tor kamienia. Na rysunku zaznacz wektory prędkości w chwili początkowej i w
najwyższym punkcie toru, wektor przyspieszenia oraz zasięg rzutu.
b) Oblicz czas trwania ruchu i zasięg rzutu.
Przyjmij wartość przyspieszenia ziemskiego g 10 m s 2 .
1.40.
Od rakiety, wznoszącej się pionowo do góry, w momencie, gdy ma ona prędkość v 1 odczepia się
na wysokości h niepotrzebny już zbiornik paliwa. Obliczyć czas spadania t oraz prędkość v2, z
jaką zbiornik opada na ziemię. Przyspieszenie ziemskie g - dane. Opór powietrza pominąć.
1.41.
Ciało rzucono pionowo do góry z prędkością początkową v 0 20 m s . Znaleźć odstęp czasu
między chwilami, kiedy ciało znajdowało się na połowie maksymalnej wysokości. Zaniedbać opór
powietrza. Przyjąć przyspieszenie ziemskie g 10 m s 2 .
1.42.
W rzucie poziomym zasięg równy jest wysokości początkowej. Prędkość początkowa ciała
wynosi v0. Obliczyć czas trwania rzutu oraz prędkość końcową ciała. Obliczenia numeryczne
wykonać dla v0 9,8 m s , g 9,8 m s 2 .
3
1.43.
Z dachu domu rzucono poziomo kamień z prędkością v0. Oblicz składową przyspieszenia
kamienia prostopadłą do toru po czasie t. Obliczenia numeryczne wykonaj dla v0 18,6 m s ,
t 2s .
1.44
Z armaty wystrzelono pocisk pod kątem
30 do poziomu z prędkością początkową
v0 100 m s . W układzie współrzędnych XOY znajdź współrzędne położenia ciała (tj.
współrzędne x, y) oraz współrzędne prędkości (tj. współrzędne vx, vy) po czasie t 0,75tc , gdzie
tc - czas trwania rzutu. Przyjąć przyspieszenie ziemskie g
9,8 m s 2 .
1.45.
Pod jakim kątem do poziomu wyrzucono ciało, jeżeli wiadomo, że maksymalna wysokość, na
jaką wzniosło się ciało, jest cztery razy mniejsza od zasięgu rzutu? Nie uwzględniać oporu
powietrza.
1.46.
Pod jakim kątem do poziomu należy skierować strumień wody, aby jego maksymalne wzniesienie
było równe zasięgowi w kierunku poziomym?
1.47.
Minutowa wskazówka zegara jest n 1,5 raza dłuższa od wskazówki godzinowej.
a) Ile razy większa jest prędkość liniowa końca wskazówki minutowej od prędkości liniowej
końca wskazówki godzinowej? b) Oblicz stosunek przyspieszeń dośrodkowych końców obu
wskazówek.
1.48.
Punkt materialny porusza się po okręgu o promieniu R 20 cm ze stałym co do wartości
przyspieszeniem stycznym as 5 cm s2 . Po jakim czasie t1 od chwili rozpoczęcia ruchu
przyspieszenie dośrodkowe ad będzie co do wartości dwa razy większe od przyspieszenia
stycznego?
1.49.
Kolarz rozpoczynając jazdę pierwsze t 30 s jedzie ruchem jednostajnie przyspieszonym. Jaką
prędkość osiąga po tym czasie, jeżeli promień kół rowerowych r 0,35 m , a przyspieszenie
0,5 rad s 2 ?
kątowe tych kół
1.50.
Karuzela wykonuje w ciągu minuty n 30 obrotów. Oblicz, jaką prędkość kątową, liniową i
przyspieszenie dośrodkowe ma człowiek, który siedzi na karuzeli. Promień toru, po którym
porusza się człowiek, wynosi R 4 m .
1.51.
Oblicz przyspieszenie dośrodkowe ciała znajdującego się na równiku Ziemi. Porównaj je z
przyspieszeniem spadku swobodnego g 9,8 m s 2 . Przyjmij, że promień równikowy Ziemi
wynosi 6380 km, a okres jej obrotu 24 h.
1.52.
Motocyklista startuje do wyścigu rozgrywanego na torze kołowym o promieniu R 60 m . W
ciągu czasu t 10 s wartość jego prędkości wzrasta jednostajnie od 0 do v 58,5 km h . Jaka była
wartość przyspieszenia stycznego (liniowego) i kątowego motocyklisty? Oblicz przyspieszenie
dośrodkowe motocykla w chwili t0 8 s . Jaki kąt tworzył w tym momencie wektor
przyspieszenia wypadkowego ze styczną do toru?
1.53.
Samochód mając prędkość v 80 km h zaczyna hamować bez poślizgu poruszając się przy tym
ruchem jednostajnie opóźnionym. Do całkowitego zatrzymania się przebył on drogę s 40 m .
Wiedząc, że promień kół samochodu wynosi R 30 cm znajdź opóźnienie kątowe kół podczas
hamowania.
4

Podobne dokumenty