Instrukcja - Instytut Obrabiarek i Technologii Budowy Maszyn

Transkrypt

Instrukcja - Instytut Obrabiarek i Technologii Budowy Maszyn
Autor - dr inż. Józef Zawada
Instrukcja do ćwiczenia nr 3
CZUJNIKI
ELEKTRYCZNE
iT
BM
Cel ćwiczenia:
PŁ
Temat ćwiczenia:
Celem ćwiczenia jest zapoznanie studentów z zasadą działania , konstrukcją i eksploatacją wybranych czujników elektrycznych, a także techniką pomiarów realizowanych za
pomocą tych czujników.
Program ćwiczenia:
ek
1. Czujniki elektrostykowe
2. Czujniki indukcyjne
bia
r
- nastawianie czujnika do kontroli określonego wymiaru;
- kontrola poprawności wykonania serii elementów;
bra
- kontrola poprawności wskazań czujnika;
- nastawianie czujnika do selekcji wymiarowej serii elementów;
- przeprowadzenie selekcji serii elementów;
3. Układy głowic indukcyjnych
tO
- przygotowanie czujnika do pomiaru układem głowic;
- przygotowanie czujnika do pomiaru z jednoczesną oceną sprawdzanego wymiaru za
pomocą sygnalizacji świetlnej;
tyt
u
- pomiary odchyłki równoległości płaszczyzn i ocena poprawności wykonania
mierzonych eksponatów
Ins
Literatura:
1. W. Jakubiec, J. Malinowski
„Metrologia wielkości geometrycznych”, WNT,
Warszawa 1999 r.;
2. A. Sadowski, E. Miernik, J Sobol - "Metrologia długości i kąta", WNT, Warszawa 1978 r.
3. E. Krawczuk - „Narzędzia do pomiaru długości i kąta”, WNT, Warszawa 1977
ŁÓDŹ 2009
-2-
WPROWADZENIE
PŁ
Czujniki elektryczne to przyrządy, w których zmiana położenia końcówki pomiarowej
powoduje odpowiednią zmianę określonej wielkości elektrycznej. Zmiana tej wielkości decyduje z kolei o postaci i parametrach elektrycznego sygnału wyjściowego.
Elektryczna postać sygnału wyjściowego jest bardzo dogodna umożliwia bowiem:
iT
BM
a) łatwą zamianę tego sygnału na impulsy sygnalizacyjne, sterownicze bądź informacyjne;
b) przesyłanie sygnału na odległość, co pozwala na rozdzielenie i dość znaczne oddalenie
od siebie czujnika, przetwornika i urządzenia wyjściowego;
c) łatwą zmianę czułości przyrządu w bardzo szerokich granicach;
W zależności od rodzaju wielkości elektrycznej zmieniającej się wraz ze zmianą
położenia końcówki pomiarowej, czujniki elektryczne dzielimy na:
bia
r
ek
a) elektrostykowe;
b) indukcyjne;
c) pojemnościowe;
d) fotoelektryczne;
W ćwiczeniu przedstawiono tylko czujniki należące do dwóch pierwszych odmian.
tyt
u
a)
tO
bra
Zasada działania czujników elektrostykowych opiera się na skokowej zmianie
oporności obwodu elektrycznego. Wyjaśnia ją schemat zamieszczony na rys.3.1. Wciśnięcie
końcówki pomiarowej 1 pokonuje opór sprężyny 2 i umożliwia sprężynie 3 obrócenie
dźwigni 4. Odpowiednio ukształtowany koniec tej dźwigni zwany zwieraczem (5), odchodzi
wtedy od lewego styku nastawnego - 6, co powoduje rozwarcie obwodu elektrycznego
zasilającego żarówkę 7 sygnalizującą wymiar zbyt mały. Dalsze przesuwanie końcówki
6
5
Ins
6
8
3
2
4
1
b)
7
-3-
Rys. 3.1. Zasada działania czujnika elektrostykowego (a-głowica pomiarowa; b - urządzenie sygnalizujące)
PŁ
pomiarowej umożliwia takie wychylenie dźwigni 4, że zwieracz zetknie się z prawym
stykiem nastawnym 6. Spowoduje to zamknięcie obwodu z żarówką 8 sygnalizującą wymiar
zbyt duży. Nastawy położeń dźwigni 4, w których ma nastąpić skokowa zmiana oporności
obwodów elektrycznych i związana z nimi zmiana sygnalizacji, dokonuje się poprzez
wkręcanie i wykręcanie styków nastawnych 6. Regulacja ta umożliwia kontrolę wymiarów o
różnych wartościach tolerancji.
bia
r
ek
iT
BM
Zasada działania czujników indukcyjnych oparta jest na zależności zachodzącej pomiędzy indukcyjnością własną (lub wzajemną) cewek przetworników, a położeniem końcówki
pomiarowej. Istnieją różne sposoby powiązania tych wielkości. Np. w czujniku indukcyjnym
dławikowym (rys. 3.2a) na dwóch U-kształtnych ferromagnetycznych rdzeniach R nawinięte
są cewki przetworników pomiarowych. Cewki te wytwarzają przemienne pole magnetyczne,
którego linie sił zamykają się poprzez ferromagnetyczną zworę Z. Zwora ta połączona jest z
końcówką pomiarową. Od położenia układu końcówka pomiarowa - zwora zależą wielkości
szczelin s1 i s2 , które mają bardzo istotny wpływ na oporność magnetyczną obu obwodów, a
w konsekwencji i na indukcyjności poszczególnych cewek. W czujniku indukcyjnym selenoidalnym (rys 3.2b) końcówkę pomiarową powiązano z ferromagnetycznym rdzeniem, który
przesuwa się wewnątrz dwóch jednakowych, nawiniętych jedna po drugiej cewek. Położenie
końcówki pomiarowej decyduje o położeniu rdzenia, to zaś z kolei o indukcyjności poszczególnych cewek.
a)
C
Z
s1
L1=f1(s1)
L1=f1(x)
A
tO
tyt
u
L2=f2(x)
L2=f2(s2)
B
x
C
c)
C
A
s2
x
bra
R
b)
d)
R1
Up
Ins
L1
A
Rk
x
Up
L2
R2
zakres
pomiarowy
B
Uz
-4-
Rys. 3.2. Zasada działania czujnika indukcyjnego (a-czujnik indukcyjny dławikowy; b - czujnik indukcyjny
selenoidalny; c - układ mostkowy; d - charakterystyka układu)
PŁ
W każdym z prezentowanych rozwiązań konstrukcyjnych zachodzące w obu cewkach
zmiany indukcyjności są ściśle ze sobą powiązane. Wzrostowi indukcyjności jednej z cewek
odpowiada spadek indukcyjności drugiej i odwrotnie. Tego rodzaju układy określa się
mianem różnicowych.
bia
r
ek
iT
BM
Zmiany indukcyjności cewek zostają następnie przekształcone w sygnał pomiarowy.
W tym celu wykorzystuje się mostek Wheatstone'a (rys 3.2c). Mostek ten jest zasilany
napięciem zmiennym Uz z generatora. Przy równości indukcyjności L1 i L2 oraz rezystancji
R1 i R2 spadki napięć w gałęziach AB i AC są jednakowe i pomiędzy punktami B i C nie
występuje różnica potencjałów. Stan taki określa się mianem równowagi mostka.
Przesunięcie końcówki pomiarowej zmienia indukcyjność poszczególnych gałęzi. Pomiędzy
wierzchołkami B i C powstaje zmienna różnica potencjałów U p , której amplituda zależy od
wielkości przesunięcia końcówki pomiarowej (rys 3.2d). Przy przechodzeniu przez stan
równowagi następuje zmiana fazy napięcia U p o 180° . Pozwala to na określenie usytuowania
końcówki pomiarowej w stosunku do położenia równowagi i zapewnienie wskazaniom
czujnika odpowiedniego znaku (+ lub -). Potencjometr Rk (rys 3.2c) służy do dodatkowej
kompensacji zera.
bra
Zawierający informację o wielkości mierzonej sygnał U p jest przetwarzany dalej w
sposób zależny od budowy i funkcji wskaźnika. Przykładowy schemat blokowy wskaźnika
przedstawiono na rys 3.3.
Ins
tyt
u
tO
Mostek pomiarowy, którego część (cewki) znajduje się w głowicy pomiarowej, a pozostała część (rezystory) - we wskaźniku, jest zasilany napięciem zmiennym z generatora.
Sygnał z mostka, po wzmocnieniu, jest przekazywany do detektora fazoczułego, skąd po
porównaniu z sygnałem podstawowym i wyprostowaniu doprowadzony jest do miernika i
(opcjonalnie) do rejestratora . Równolegle sygnał z detektora przysyłany jest do selektora
zawierającego zespół przerzutników elektronicznych o nastawnych napięciach zadziałania.
Przekraczanie tych napięć powoduje zmiany sygnalizacji świetlnej poprzez odpowiednie
otwieranie i zamykanie jej obwodów elektrycznych. Analogiczne zmiany zachodzą w obwodach sterowania.
-5-
Rejestrator
Sterowanie
Detektor
fazoczuły
Selektor
Mostek pomiarowy
Pozostała
część mostka
PŁ
Wzmacniacz
głowica
pomiarowa
iT
BM
Miernik
Generator
Sygnalizacja
Zasilacz
sieć
ek
Rys. 3.3. Schemat blokowy czujnika indukcyjnego
bia
r
Niektóre zadania pomiarowe wymagają dodawania lub odejmowania dwóch różnych
wskazań przyrządu pomiarowego. W przypadku zastosowania czujników indukcyjnych operacji tej można dokonywać automatycznie poprzez odpowiednie łączenie sygnałów przychodzących jednocześnie z dwóch głowic pomiarowych. W zależności od sposobu łączenia tych
sygnałów wyróżnia się układy sumujące i układy różnicowe głowic pomiarowych (rys 3.4).
Ins
a)
tyt
u
tO
bra
Poza automatycznym sumowaniem wyników układy czujników indukcyjnych mogą
posiadać inne istotne zalety. Przykładowo, przedstawiony na rys 3.5a sumujący układ do
pomiaru grubości jest mało wrażliwy na odchyłkę położenia mierzonego elementu w kierunku
równoległym do osi pomiaru (przemieszczenie elementu w tym kierunku spowoduje spadek
wartości sygnału z jednej głowicy i wzrost wartości sygnału z drugiej; suma wartości obu
sygnałów praktycznie się nie zmieni). Z kolei przedstawiony na rys 3.5b różnicowy układ do
pomiaru równoległości płaszczyzn jest mało wrażliwy na wpływy zewnętrzne (np. wpływ
temperatury), oraz różnice w wysokościach mierzonych elementów. Spowodowane tymi
przyczynami zmiany sygnałów obu głowic skompensują się wzajemnie.
x
b)




x
Rys.3.4. Działanie układów głowic pomiarowych: a - sumującego; b - różnicowego;
-6-
a)
PŁ
b)
iT
BM
c)
PRZEBIEG ĆWICZENIA
Zadanie 1.
bia
r
ek
Rys. 3.5. Przykłady pomiarów dokonywanych przy
pomocy układów głowic indukcyjnych
a) pomiar grubości elementów;
b) pomiar nierównoległości płaszczyzn;
c) pomiar prostopadłości tworzącej;
bra
Dla zadanego przez prowadzącego zajęcia wymiaru wymaganego nastawić odpowiednio czujnik elektrostykowy i dokonać za jego pomocą oceny poprawności wykonania
wysokości wskazanych wałków.
tO
W ćwiczeniu wykorzystany zostanie zestaw pomiarowy produkcji FWP im. Świerczewskiego (rys. 3.6). W skład tego zestawu wchodzi głowica pomiarowa (a), wskaźnik (b) oraz
podstawa pomiarowa (c).
tyt
u
W celu wykonania zadania należy:
1. Zbudować dwa stosy płytek wzorcowych o wysokościach równych wartościom granicznym zadanego wymiaru wymaganego;
Ins
2. Za pomocą pokrętła 6 ustawić wstępnie lewy styk nastawny. Właściwe położenie styku
zależy od wielkości tolerancji sprawdzanego wymiaru. Przy dużych tolerancjach
(T  0.2 mm) kontakt pomiędzy stykiem a zwieraczem winien mieć miejsce w okolicy
dolnej podstawy styku. W miarę spadku wartości tolerancji sprawdzanego wymiaru punkt
zetknięcia obu tych elementów winien zbliżać się do górnej podstawy styku.
3. Umieścić głowicę pomiarową w gnieździe uchwytu (rys.3.6 poz.17) i unieruchomić ją za
pomocą pokrętła 23.
4. Stos płytek o wysokości równej dolnej wartości granicznej umieścić pod stopką głowicy
pomiarowej. Za pomocą pokrętła 15 opuszczać powoli głowicę aż do momentu zmiany
-7-
PŁ
sygnalizacji świetlnej. Jeżeli zakres regulacji pokrętłem 15 okaże się za mały należy wycofać je w położenie środkowe i skorzystać z możliwości zgrubnej regulacji położenia ramienia 16 za pomocą nakrętki 22 po uprzednim odblokowaniu go pokrętłem 21. Następnie
ponownie wykorzystać pokrętło 15.
5. Dokonać końcowej, precyzyjnej regulacji położenia lewego styku głowicy pomiarowej.
W tym celu należy przemieszczać go bardzo powoli za pomocą pokrętła 6 przerywając tę
czynność natychmiast po zmianie sygnalizacji świetlnej.
iT
BM
6. Sprawdzić poprawność ustawienia styku przez delikatne pocieranie korpusu głowicy
opuszkiem palca w kierunku góra-dół. Jeżeli styk jest dokładnie ustawiony, pocieranie
takie wywołuje zmiany sygnalizacji świetlnej. W przypadku, gdy zmiany takie nie zachodzą czynności przedstawione w punktach 5 i 6 należy powtórzyć.
bia
r
ek
7. Dokonać końcowej, precyzyjnej regulacji położenia prawego styku głowicy pomiarowej.
Czynność tą wykonuje się w ten sam sposób, który przedstawiono w punktach 5 i 6 , z tą
tylko różnicą, że pod stopką czujnika znajduje się teraz stos płytek o wysokości równej
górnej wartości granicznej, a do regulacji położenia prawego styku używa się pokrętła 7.
Nie wolno też korzystać z pokrętła 15 ponieważ uległoby wtedy rozregulowaniu położenie
lewego styku.
Ins
tyt
u
tO
bra
8. Przeprowadzić kontrolę poprawności wykonania wysokości wskazanych wałków. Wyniki
kontroli odnotować w karcie pomiarów.
M
6
7
b)
TB
8
9
10
11
c)
bra
bia
rek
i
a)
MDNa
4
5
STEROWANIE
3
2
12
WYŁ
13
ytu
tO
1
CZUJNIK
15
20
16
21
17
22
18
23
19
24
MDMp
MDDh
14
Rys. 3.6. Czujnik elektrostykowy: a) głowica pomiarowa; b) wskaźnik;
c) podstawa pomiarowa;
-9-
PŁ
Zadanie 2
Przygotować do pracy czujnik indukcyjny i na podstawie jego sygnalizacji podzielić
wskazaną partię wałków na dwie grupy selekcyjne. Wymiary wymagane grup selekcyjnych
WI = ? i WII = ? określi prowadzący zajęcia. Jako kryterium podziału przyjąć zaobserwowaną wartość średnicy wałka.
iT
BM
W ćwiczeniu wykorzystany zostanie zestaw pomiarowy składający się z indukcyjnej
głowicy pomiarowej, urządzenia wskazująco-sygnalizująco-sterującego (rys. 3.7) oraz podstawy pomiarowej (rys. 3.6c). W celu wykonania zadania należy:
1. Sprawdzić poprawność działania przyrządu:
Ins
tyt
u
tO
bra
bia
r
ek
- włączyć przewód zasilający czujnika do sieci oraz wcisnąć klawisz zasilania (rys. 3.7,
poz. 5);
- dobrać właściwy dla realizowanego zadania zakres pomiarowy przyrządu (do wyboru
zakresy: 5m, 25 m i 80 m) i wcisnąć jego klawisz;
- wcisnąć klawisz dodatniego kierunku wskazań oznaczony literą P;
- pokrętło regulacji zera 3 ustawić w położeniu środkowym;
- przygotować trzy stosy płytek wzorcowych o wysokościach dobranych tak,aby po wyzerowaniu przyrządu na stos o średniej wysokości, dwom pozostałym stosom odpowiadały
wskazania równe odpowiednio dolnej i górnej granicy wybranego zakresu pomiarowego;
- wykorzystując stos o średniej wysokości starannie wyzerować czujnik używając w tym
celu przede wszystkim elementów regulacyjnych podstawy pomiarowej (nakrętka 22 i
pokrętło 15). Pokrętła regulacji zera (rys.3.7 poz. 3) używać tylko w końcowej fazie
zerowania i w możliwie małym zakresie, co pozwoli na pozostanie w najkorzystniejszym obszarze charakterystyki czujnika;
- podsuwając pozostałe stosy płytek wzorcowych sprawdzić poprawność wskazań przyrządu. W przypadku stwierdzenia błędów przekraczających wartość jednej działki
elementarnej wskaźnik należy wyregulować. Do ustawienia symetrii wskazań służy
pokrętło 2 (rys. 3.7), a do regulacji wzmocnienia - pokrętło znajdujące się w dnie
obudowy wskaźnika.
- 10 -
7
1
2
PŁ
1
6
2
3
iT
BM
4
3
5
0
L
P
80
25
5
6
MDNf-A5
5
ek
4
Rys. 3.7. Wskaźnik czujnika indukcyjnego
2. Ustawić sygnalizację świetlną czujnika zgodnie z zadanym wariantem danych.
bia
r
Zauważmy, że cały obszar możliwych wartości zaobserwowanych dzieli się na
cztery podobszary (rys. 3.8), a mianowicie:
{ d < AWI } , { AWI < d < BWI } , { AWII < d < BWII } i { d > BWII }
tO
bra
gdzie A i B oznaczają wartości graniczne wymiarów wymaganych dla pierwszej (W I) i
drugiej (WII) grupy selekcyjnej. W przypadku takim optymalne wykorzystanie zakresu
pomiarowego uzyskuje się przy zerowaniu czujnika za pomocą stosu płytek wzorcowych o
wysokości h = BWI = AWII . Granice poszczególnych obszarów wyznaczać będą wtedy
odchyłki: -TWI , 0 i TWII , gdzie TWi oznacza wartość tolerancji i-tej grupy selekcyjnej.
tyt
u
Przyjmując przedstawiony wyżej sposób zerowania czujnika oraz pokazane na
rys. 3.8 przyporządkowanie elementów sygnalizacyjnych, nastawy selektora można dokonać w następujący sposób:
a) za pomocą wkrętaka ustawić wszystkie pokrętła potencjometrów (rys. 3.7, poz.7) w
prawe skrajne położenia;
Ins
b) podstawić pod stopkę czujnika stos płytek wzorcowych o wysokości h = B WI , odblokować ramię podstawy (pokrętło 21, rys.3.6) i tak je opuścić, aby uzyskać dowolne
wychylenie wskazówki. Następnie ramię zablokować;
c) za pomocą pokrętła 15 (rys. 3.6) oraz (w możliwie małym stopniu) za pomocą pokrętła
regulacji zera (rys. 3.7, poz. 3) ustawić wskazówkę przyrządu w położeniu  = -TWI .
Powinna się palić żarówka nr 1 (rys. 3.7, poz. 6);
d) pokręcać powoli pokrętło potencjometru 1/2 (rys. 3.7, poz. 7) aż do chwili zapalenia się
żarówki nr 2;
e) sprawdzić poprawność ustawienia potencjometru 1/2 przez bardzo wolne przemieszczanie wskazówki za pomocą pokrętła regulacji zera. Ustawienie potencjometru można
- 11 -
PŁ
uznać za poprawne jeśli zmiana sygnalizacji świetlnej wystąpi przy położeniu
wskazówki różniącym się od wymaganego nie więcej niż o połowę działki
elementarnej. Jeżeli warunek ten nie jest spełniony położenie potencjometru należy
odpowiednio skorygować;
iT
BM
f) w analogiczny sposób ustawić pokrętło potencjometru 2/3 - przy wychyleniu wskazówki  2 = 0 i pokrętło potencjometru 3/4 - przy wychyleniu wskazówki  3 = TWII. Zmian
położenia wskazówki należy dokonywać głównie za pomocą pokrętła 15 (rys.3.6).
W końcowej fazie ustawiania można skorzystać z pokrętła regulacji zera.
BWII
BWI = AWII
AWI
I grupa
1-a żar.
2-ga żar.
za duże
3-a żar.
4-ta żar.
0
d
TWII
bia
r
-TWI
II grupa
ek
za małe
Rys. 3.8. Podział zbioru możliwych wartości zaobserwowanych
3. Wyzerować czujnik.
bra
Pod stopką czujnika winien znajdować się stos płytek o wysokości h = BWI. Za
pomocą pokrętła 15 (rys. 3.6) ustawić wskazówkę w położenie  = 0. Do precyzyjnego
ustawiania wskazówki można wykorzystać pokrętło regulacji zera (rys. 3.7, poz 3).
4. Ustawić stopę zderzaka.
tyt
u
tO
Stopa zderzaka (rys.3.6 poz. 18) służy do ustalania położenia mierzonych przedmiotów. W naszym przypadku należy ustawić ją tak, aby dosunięty do niej wałek stykał się z
końcówką głowicy pomiarowej swoją najwyższą tworzącą. W tym celu, po odblokowaniu
stopy, przesuwamy ją wraz z mierzonym wałkiem tak, aby uzyskać maksymalne wychylenie wskazówki. W położeniu, w którym to następuje, stopę należy zablokować.
5. Podzielić wskazaną partię wałków na grupy selekcyjne.
Dosuwając do stopy zderzaka kolejne wałki i obserwując wskazania sygnalizacji świetlnej dokonać klasyfikacji poszczególnych wałków. Wyniki odnotować w karcie pomiarów.
Ins
6. Oszacować niepewność wyniku pomiaru.
Na całkowity błąd każdego z przeprowadzanych w ramach niniejszego zadania pomiarów składają się przede wszystkim:
-
błędy płytek wzorcowych użytych do zerowania przyrządu;
błąd zerowania;
błędy głowicy pomiarowej i wskaźnika;
błędy popełnione przy ustawianiu sygnalizacji świetlnej;
- 12 -
Aby obliczyć graniczną wartość błędu pomiaru (niepewność wyniku pomiaru) należy
najpierw oszacować graniczne wartości w/w błędów.
PŁ
Graniczne dopuszczalne wartości błędów płytek wzorcowych zależą od ich długości
nominalnej i klasy dokładności wykonania. Szczegółowe dane odnośnie wartości tych błędów
zawiera poniższa tabela:
TABELA 1. Graniczne dopuszczalne wartości błędów płytek wzorcowych [m]
00
0
L  10
0,06
0,12
10 < L  25
0,07
0,15
25 < L  50
0,10
0,20
iT
BM
Klasa dokładności wykonania płytek
Wymiar nominalny
L [mm]
1
2
0,25
0,50
0,30
0,60
0,40
0,80
bia
r
ek
Graniczna wartość błędu zerowania zależy od staranności z jaką przeprowadzamy ten
proces. W naszym przypadku zerowanie należy przeprowadzić tak, aby graniczna wartość
błędu nie przekroczyła 0,3 wartości działki elementarnej.
bra
Graniczna wartość błędów głowicy pomiarowej i wskaźnika wynosi wg danych ich
producenta  3% używanego zakresu pomiarowego. Wynika stąd, że ze względu na dokładność należy zawsze pracować na możliwie najmniejszym zakresie pomiarowym przyrządu.
tO
Wartość błędu ustawienia sygnalizacji zależy głównie od staranności, z jaką ustawienie
to jest realizowane. W naszym przypadku (p. punkt 2e) graniczna wartość tego błędu wynosi
połowę wartości działki elementarnej.
Niepewność pomiaru ux obliczamy z zależności  u x 
  x 
2
u
i
,
Zadanie 3
tyt
u
gdzie uxi (i = 1, 2,..., n) oznacza niepewności oszacowania wartości poszczególnych
błędów źródłowych. Uzyskany wynik należy odnotować w karcie pomiarów.
Ins
Za pomocą układu głowic indukcyjnych dokonać pomiaru odchyłki równoległości
płaszczyzn oceniając jednocześnie na podstawie sygnalizacji świetlnej poprawność wykonania mierzonych eksponatów. Dopuszczalne wartości odchyłki równoległości określi prowadzący zajęcia.
Do wykonania powyższego zadania wykorzystany zostanie elektroniczny przyrząd do
pomiaru długości TT60 produkcji szwajcarskiej f-my TESA. Przyrząd ten wyposażony jest w
dwie indukcyjne głowice pomiarowe, które można stosować pojedynczo bądź razem: w układzie sumującym i w układzie różnicowym.
Do mocowania głowic pomiarowych służy specjalny uchwyt, dostosowany do kształtu
mierzonych elementów. Uchwyt ten dokładnie ustala wzajemną odległość obu głowic, w
- 13 -
naszym przypadku wynosi ona 100 mm. Uchwyt mocujący głowice zamocowany jest z kolei
w standardowej podstawie pomiarowej, identycznej jak w przypadku poprzednich zadań
(rys. 3.6c)
iT
BM
Realizację zadania 3 można podzielić na trzy etapy:
PŁ
Widok przyrządu TT60, ze szczególnym uwzględnieniem elementów sterujących pokazano na rysunkach 3.9 i 3.10. Szczegółowe informacje na temat przyrządu zawiera znajdująca
się na stanowisku pomiarowym instrukcja jego obsługi.
Przygotowanie przyrządu do pomiaru nierównoległości płaszczyzn za pomocą układu
głowic.
II. Włączenie i odpowiednie ustawienie trybu pomiaru z oceną za pomocą sygnalizacji
świetlnej.
III. Przeprowadzenie pomiarów i dokonanie oceny wskazanych eksponatów.
I.
ek
Aby przygotować przyrząd TT60 do pomiaru nierównoległości płaszczyzn za pomocą
układu głowic należy:
bia
r
1. Przygotować dwa stosy płytek wzorcowych o wysokościach tak dobranych, aby ich średnia była zbliżona ( 0,1 mm) do średniej odległości kontrolowanych płaszczyzn, a różnica
wynosiła 0,5 mm.
2. Sprawdzić poprawność zamocowania głowic pomiarowych w uchwycie. Głowica podłączona do gniazda A powinna znajdować się z lewej strony.
bra
3. Za pomocą wyłącznika 1 (rys. 3.10) włączyć zasilanie przyrządu.
Ins
tyt
u
tO
4. Obserwując wskaźnik funkcji pomiarowej 7 (rys. 3.9) ustawić za pomocą klawiszy
wyboru 6 funkcję pomiarową A (przyrząd wyświetla wartość sygnału pochodzącego
wyłącznie z głowicy A).
10
11
4
2
3
5
M
13
14
1
bra
bia
rek
i
9
TB
- 14 -
0
1
1
2
3
12
4
5
-
+
HOLD
-88888.8 
T


in
m
  
CAL
AUTO RANGE
2
8
HOLD
A
B
Tol
ytu
tO
MO
 888.8
7
6
5
in
m
0
0
4
UNIT
3
RANGE
MEM
2
Rys. 3.9. Widok strony przedniej przyrządu TT60: 1) wyświetlacz analogowy i cyfrowy; 2) klawisz przełącznika analogowych zakresów pomiarowych; 3) wskaźnik skali
analogowej; 4) klawisze elektronicznej korekcji wartości wskazania; 5) klawisz przełącznika trybu oceny; 6) klawisze wyboru funkcji pomiarowej; 7) wskaźnik
funkcji pomiarowej; 8) wskaźnik uaktywnienia trybu oceny; 9) optyczny wskaźnik poprawności sprawdzanego wymiaru; 10) wskaźnik poprawności zasilania; jego
pojawienie się sygnalizuje, ze napięcie zasilania wykracza poza dopuszczalne granice; 11) wskaźnik trybu zachowania; 12) obudowa ze składanym pod spód
wspornikiem, umożliwiającym dwa różne pochylenia przyrządu; 13) wskaźnik zablokowania klawiatury; 14) wskaźnik rodzaju mierzonego wymiaru;
 RS
1
ON
8
ytu
tO
OFF
8
M
bra
bia
rek
i
TB
- 15 -
7
6
5
A
B
4
3
DC 7.3V
ON
2
1
Rys. 3.10. Widok strony tylnej przyrządu TT60: 1) wyłącznik zasilania; 2) gniazdo zasilania zewnętrznego; 3) gniazdo wejściowe
głowicy pomiarowej B; 4) gniazdo wejściowe głowicy pomiarowej A; 5) gniazdo transferu danych zewnętrznych;
6 – piętnastostykowe gniazdo wejścia/wyjścia; 7 – mikroprzełączniki konfiguracji; 8) wejście/wyjście OPTO-RS;
- 16 -
5. Zlikwidować ewentualną elektroniczną korekcję wskazania wartości sygnału z głowicy A.
0
0
W tym celu należy jednocześnie wcisnąć i przytrzymać klawisze
i
aż do
chwili, gdy symbol
pojawi się poniżej wskaźnika funkcji pomiarowej
PŁ
6. Stos płytek o mniejszej wysokości podsunąć pod końcówkę pomiarową głowicy A. Wykorzystując elementy regulacyjne podstawy pomiarowej, a w szczególności pokrętło 15
(rys. 3.6c) ustawić wskazówkę w położeniu zbliżonym do zera (-5 m <  <5 m).
iT
BM
7. Postępując analogicznie jak w punkcie 4 wybrać funkcję pomiarową B. Postępując
analogicznie jak w punkcie 5 zlikwidować ewentualną elektroniczną korekcję wskazania
wartości sygnału z głowicy B.
ek
8. Odblokować głowicę B w uchwycie, podsunąć pod jej końcówkę pomiarową niższy stos
płytek i tak ustawić głowicę względem uchwytu, aby wskazanie przyrządu było zbliżone
do zera. Czynność ustawiania głowicy B należy przeprowadzić ręcznie bez zmiany
położenia uchwytu (tak, aby nie zmienić położenia głowicy A). W momencie, gdy
wskazanie przyrządu mieści się w przedziale (-100 m, 100 m) głowicę można ponownie
zablokować w uchwycie
9. W sposób analogiczny jak w punktach 4 i 7 wybrać funkcję pomiarową A - B
bra
bia
r
10. Wsunąć pod końcówkę pomiarową głowicy A wyższy, a pod końcówkę głowicy
pomiarowej B niższy stos płytek. Ponieważ różnica wysokości pomiędzy stosami wynosi
0,5 mm przyrząd powinien wskazywać  = 500 m. Ze względu na błędy przy wstępnym
ustawianiu położenia głowic wskazanie przyrządu jest przeważnie inne. Dlatego należy je
sprowadzić do pożądanej wartości. Wykorzystujemy w tym celu elektroniczną korekcję
0
0
wskazania przyrządu sterowaną klawiszami
i
.
tO
11. Zamienić miejscami stosy płytek. Przyrząd powinien wskazywać wartość  = - 500 m.
Możliwe są również wskazania  = - 499 m i  = - 501 m. W przypadku wystąpienia
innej wartości należy poinformować o tym prowadzącego zajęcia.
Aby włączyć i odpowiednio ustawić tryb pomiaru z oceną za pomocą sygnalizacji
świetlnej należy:
tyt
u
1. Za pomocą klawisza przełącznika analogowych zakresów pomiarowych (rys. 9, poz. 2)
wybrać możliwie mały analogowy zakres pomiarowy mieszczący w sobie wszystkie
wartości dopuszczalne kontrolowanego wymiaru.
2. Wcisnąc klawisz przełącznika trybu oceny (rys. 9, poz. 5)
a)
Ins
Pierwsze wciśnięcie przełącznika trybu oceny powoduje wyświetlenie wartości górnej
granicy tolerancji oraz pokazuje jej pozycję na skali analogowej (rys.11a)
b)
- 17 -
0
1
1
1
2
-
+
T

8100.0
1
2
+
-
m
-100.0
T

RANGE
m
,
m
RANGE
 200.0
m
iT
BM
 200.0
0
2
PŁ
2
Rys. 11. Widok wyświetlacza po pierwszym (a) i drugim (b) wciśnięciu klawisza przełącznika trybu oceny
3. Za pomocą klawiszy korekcji wartości wskazań (rys.9, poz. 4 ) ustawić zadaną przez
prowadzącego wartość górnej granicy tolerancji.
4. Wcisnąć ponownie klawisz przełącznika trybu oceny
Drugie wciśnięcie przełącznika trybu oceny powoduje wyświetlenie wartości dolnej
granicy tolerancji oraz pokazuje jej pozycję na skali analogowej (rys.11b).
ek
5. Za pomocą klawiszy korekcji wartości wskazań (rys.9, poz. 4) ustawić zadaną przez
prowadzącego wartość dolnej granicy tolerancji.
bra
bia
r
6. Wcisnąć klawisz trybu oceny.
Trzecie wciśnięcie klawisza trybu oceny włącza tryb pomiaru z jednoczesną oceną poprawności wykonania mierzonego wymiaru za pomocą sygnalizacji świetlnej. Przyrząd
jest gotowy do pracy. Przykładowy widok wyświetlacza przy pracy w tym trybie pokazano na rys. 12.
tO
elementy sygnalizacji świetlnej
analogowe wskazanie zmierzonego
wymiaru (+60 m)
0
1
1
2
2
tyt
u
-
T
Ins


+
HOLD
8863.6

m
RANGE
 200.0
m
Rys. 12. Widok wyświetlacza przy pracy przyrządu w trybie pomiaru z jednoczesną oceną
mierzonego wymiaru za pomocą sygnalizacji świetlnej
W etapie trzecim pod końcówki pomiarowe obu głowic wprowadzamy mierzone
eksponaty ustawiając je tak, aby:
- punkty styku obu głowic z mierzonym eksponatem leżały symetrycznie względem jego
obrysu;
- 18 -
- numer eksponatu nie był odwrócony „do góry nogami” (p. rys 13);
x
x
3 - 11
numer eksponatu
eksponat
PŁ
położenie końcówek pomiarowych
iT
BM
Rys. 13. Schemat ustawienia eksponatu do pomiaru zespołem głowic
Ins
tyt
u
tO
bra
bia
r
ek
Wyniki pomiarów i oceny zmierzonych eksponatów odnotować w odpowiednich
rubrykach karty pomiarów.