ensuring accuracy in multitasking machines

Transkrypt

ensuring accuracy in multitasking machines
1/2015
Technologia i Automatvzacja Montazu
ENSURING ACCURACY IN MULTITASKING MACHINES
A. Z. GABDULLINA, B. B. RAKISHEV, K. A. TLEKENOVA
Abstract
The possibility of error forms cylindrical shells in the form of oval cut diamonds and tetras. The use of energy stability theory
of thin-walled cylindrical shells on the basis of which an algorithm arising deformation depending on the size of the shell, the
physical and mechanical properties of materials (E - modulus and Poisson и - coefficient) and the emerging district of residual
stresses from machining. Consider the internal potential energy of the middle surface of the shell and the shell bending energy
and the work of external forces (from residual stresses). The resulting algorithm f = q>(pe, L, R, h, E, /и) has allowed us to build
a theoretical framework for constructing stabilizing processes of machining of thin-walled cylindrical shells. Established a very
important conclusion that creating machining identical magnitudes and signs of stress on the inner and outer walls of the shell
is generally possible to eliminate distortion, bringing its value to zero. Since it is practically impossible to bring such an ideal
condition for processing, it is necessary to try to regulate or control the level and sign of residual stresses due to the mode
control cutting, cutting tool geometry, etc.
Keywor ds
work area, positional deviation correction, machine control program
Analysis of the various layouts of existing CNC ma­
chines controlled, including multipurpose tools showed
headstock (D^\y/) = ( a ^ \ [ b ^ ] , c ^ \ ^ ,
, coor­
dinate Г —> [^ 5)].
that traffic shaping the processing of parts for such ma­
chines created by the relevant executive movements ma­
The values of other components of the vector for the
chine surfaces, which are based for the w ork piece and
considered position of nodes depend on the geometric
cutting tools. A t the same time the required trajectory of
accuracy of machine - straightness guide from the gaps
the relative motion of the executive surfaces is achieved
in the rails and other system atic and random factors that
by moving the managed coordinates X, Y, Z, ф, ц moving
determine the accuracy of the moving node.
machine components (tables, slides, carriages), which is
carried out basing on the relevant directs [1].
Positioning assembly for one of controlled axes leads
to a master link on the spatial variations across the six
= (a ^ ,b ^ ,c ^ ,
parameters of the vector ып, which means - if you move
, y ^ ) parameters vary with the corresponding co­
one controlled coordinate simultaneous formation of de­
ordinates of the controlled characterizes the accuracy of
viations in other directions, the movement which is not
Current Position vector whose
positional displacements of each node machine. For ex­
programmable. In this case generated deviations may
ample is a multi-purpose machine horizontal layout. Po­
exceed the accuracy of the positioning on the corre­
sition vector parameters have the subscript "n” , as char­
sponding coordinate in 1.5 ... 3 times. All these deviations
acterized by bias arising from the positioning of machine
are formed in step a static configuration in the working
components. Superscript is a moving structure. Drive on
position of the machine in accordance with a predeter­
each managed coordinate determines the accuracy of
mined control program.
only one of the six parameters of the vector positioning
Thus, if each value of the controlled coordinates U =
(X, Y, Z, ф, ц) put in correspondence related ranking val­
a particular node [2]:
ues vectors
longitudinal table a $ ( z ) = (
a
^
, y$),
coordinate Z —>[c^2)];
cross table c o f ( x ) = ( [ a ^ ], b f , c ™,
dinate X —>[aifl )\,
) , coor­
we can define the vector
deflection static configuration Akcn anywhere N X y,, z)
the working volume of the machine [3]:
N,(X,, У,, Z)
^
Ac(Acxn, А суП, A czn)
(1)
As a result of evaluation of geometrical precision ma­
turntable a% \yf) = (а[* \Ь [* \ с ^ \ Л [§
dinate
> coor'
chining center milling and boring machines diagram ob­
tained spatial positional deviations in his work area (Fig­
ure 1).
54
Technologia i Automatvzacja Montazu
1/2015
Fig. 1. The spatial positional deviation in the working area of the machine
Compensation arising positional deviations Akcn can
be accomplished in the following manner correction. The
method consists in the fact that in accordance with the
where (X, Y, Z, y) - coordinates given in the source pro­
identified deviations in the values of a particular point of
gram the machine control; K „ , K „ , K „ , K - correction
the working area of the machine A c. = (Acxn, A cyn, A czn)
value for each of the control coordinates; X * , Y*, Z *,
autom atically makes the necessary amendm ent to the
coordinates of the controlled program block [4]:
y * - corrected coordinate values transmitted by refine­
ment of the actuators of the machine.
Correction, introduced by each control coordinate is
(K
, K y i, K x i')= L[(-A
), (-A
), (-A
)
v xi
'
cxi'
'
cyi'
'
czi'
for x.i e (x
... x
' max
); *yi e (y
... *y
V” max
(2)
); zi e (z
' m
given by:
z
(4)
Manage a multi-purpose machine with a computer
implemented method allows applying corrections to the
machine control program by changing the text frame pro­
gram immediately before the information received from
them for mining machine. This method allows for the
rapid correction in the course of performing the process­
or in short notation K = A ■Y
ing required to make a change in the text of the corre­
where A - functional matrix coefficients that take into ac­
sponding frame of the control program. When this restric­
count the impact of the current coordinates to the value
tion correction procedure can only be the time required
of corrective action.
to change the desired setting, which does not affect the
continuity of the processing details.
Elements of the matrix A is determined according to
the expression (4) by a composite transformation associ­
In accordance with the control algorithm, implemented
ated with the summation of the corresponding elements
using a computer, reading in the early going each of the
of rectangular matrices, taking into account the relation­
frames of the program specified in the code ISO-7bit, and
ship between the coordinates of points machined work
then, if necessary, correction is performed set point con­
piece surface (x y
trol coordinates by the formulas:
and the current values of controlled axes (X, Y, Z).
zfl), dimensions overhang (хи, у и, z j
As a result, when the locating and shaping of move­
ment relative movement is provided by a correction of
(3)
the cutting tool details and K X, K Y , K Z to compensate for
dimensional deviations A . = (AcX, A cY, A cZ) at each point
in the working area due to an error of positional displace­
55
1/2015
Technologia i Automatyzacja Montazu
ments and deviations geometric precision equipment.
Correction relative rotation K carried out in the presence
of angular deviations A y installed in the position details
and satellite. In cases w here only a portion of com pensat­
ed positional deviations, defined as "the positioning error
for a given coordinate” resulting from inaccuracies manu­
facture spindles and program execution, the expression
(3) takes the form:
(5)
determining the value and accuracy defined movements
automatically receive directly from the technology pro­
gram. Accessing the software unit to calculate corrective
amendments occurs on the basis of the information re­
ceived. Functional values of the coefficients that take into
account the impact of the current coordinates to the value
of corrective action, set before processing.
For the introduction of the necessary information on
the geometric accuracy of the machine can be used as
program tables that assign values of controlled axes X, Y,
Z, y' and corrective amendments K x , Ky , K z .
In expression (5), the elements a*x;b*;c*z are the di­
New managers coordinate values obtained after ad­
ministration of corrective amendments are put in place
earlier, and a modified frame is transmitted to the ma­
agonal elements of the m a trix ^ , which take into account
three parameters, bias offset axes X , Y , Z , resulting mal­
functioning of the actuator by the respective coordinate.
chine for testing. Thus, in the modified control program
accounted for the geometric accuracy of machine equip­
ment, which is used for machining a w ork piece.
Autom atic addition of correction required in the pro­
gram of the machine in the course of processing means
that specified in the original program installation and
formative movements complemented by small displace­
ments caused by the action of corrective procedures.
Office machine by using microprocessor technology
allows to realize the proposed control method accuracy
as software - implemented corrective procedures, com­
piled as a working program. Correction program devel­
oped positional accuracy displacement has a hierarchical
m odular structure. This allows the program by introduc­
ing additional blocks, not only to compensate for devia­
tions of geometric accuracy of the machine but also the
thermal deformation sized tool w ear and other factors
constant, and systemic, including bias, error due to in­
stallation details, and the satellite instrument.
Corrective procedures carried out during the part in
the translation of the control program on the machine, i.e,
immediately before the corresponding frame on practic­
ing in NC. This means meeting the requirements of ma­
chine control in real time.
During translation, alternately viewed all frames tech­
nology program, and to perform corrective procedures
selected those that provide information about the impor­
tance of movement in the direction defined by the rel­
evant controlled axes. Thus, the main source parameters
REFERENCES
1.
2.
3.
4.
Технология машиностроения: Учебник для вузов
(под. ред. В.А. Мухина, А.М. Дальского, Г.Н.
Мельникова) - М; МВТУ им. Н.Э. Баумана, 1998,т.
1 -360 с.; т. 2 -3 5 0 с.
Технология машиностроения, в 2 ч.: Учебник для
студ. Учреждений сред. проф. образования/ В.Ю.
Новиков. - М.: Издательский центр «Академия»,
2011,ч. 1 -384 с., ч. 2-351 с.
Основы технологии машиностроения.: Учебник/
В.А. Тимирязев., А.А. Кутин., А.Г. Схирдлазе-М.:
ГОУ ВПО МГТУ «Станкин», 2011.
Машина
жасау
технологиясы.:
Оқулық/
Мендебаев Т.М., Габдуллина А.З., Шеров К.Т.,
Алматы қаласы, ҚР Ж оғарғы оқу орындарының
қауымдастығы, 2013 ж. 527 б.
Gabdullina Ayman Zamanbekovna - Associate Profes­
sor, Ph.D., Kazakh National Technical University named
after K.I.Satpayev, Republic of Kazakhstan 050013, Al­
maty, st. Satpaeva 22, Institute of Industrial Engineering,
Department of „Standardization, Certification and Engi­
neering Technology” , e-mail: aiman.22.66 @ mail.ru
Rakishev B. B. - Kazakh National Technical Universi­
ty named after K.I.Satpayev, Republic of Kazakhstan
050013, Almaty, st. Satpaeva 22.
Tlekenova K. A. - undergraduate, Kazakh National Tech­
nical University named after K.I.Satpayev, Republic of
Kazakhstan 050013, Almaty, st. Satpaeva 22.
ZAPEWNIENIE DOKLADNOSCI W OBROBCE WIELOZADANIOWEJ
Streszczeni e
W pracy rozpatrzono mozliwe bt^dy ksztattu cienkosciennych cylindrow w postaci owalnosci i graniastosci. Wykorzystano do
tego energetyczn^ teoriQ stabilnosci cienkosciennych oston, na podstawie ktorej uzyskano algorytm powstaj^cych deformacji
w zaleznosci od wymiarow ostony, fizykomechanicznych wtasciwosci materiatow (modut spr^zystosci E oraz wspotczynnik
Poissona /и) oraz konstytuowanych w obrobce mechanicznej obwodowych napr^zen wtasnych. Dokonano analizy wewn^trznej potencjalnej energii i energii zginania ostony oraz pracy sit zewn^trznych (od napr^zen wtasnych). Otrzymany algorytm
f = ф(ав, L, R, h, E, и) umozliwit opracowanie podstaw teoretycznych stabilizacji procesow obrobki mechanicznej cienkoscien­
nych oston. Stwierdzono, ze zapewniaj^c w obrobce mechanicznej jednakowe wartosci napr^zen na wewn^trznej i zewn^trznej
powierzchni ostony, mozna catkowicie wyeliminowac jej deformacjQ. W tym celu nalezy regulowac lub sterowac wielkosci^
i znakiem napr^zen wtasnych poprzez dobor warunkow skrawania, geometrii narz^dzia itp.
St owa k l u c z o we
strefa obrobki, korygowanie odksztatcen, sterowanie obrobk^ mechaniczn^
56
TECHNOLOGIA I AUTOMATYZACJA MONTAZU
zespolow, maszyn i urz^dzen
Ogolnopolski Kwartalnik Naukowo-Techniczny Nr 1 (87) styczen - marzec 2015
Zakres tem atyczny
W NUMERZE
• Projektowanie procesow technologicznych montazu
• Montazowe urz^dzenia technologiczne
1.
Kluz R., Trzepiecinski T.: Wykorzystanie sztucznych
sieci neuronowych do prognozowania poziomu montowalnosci stanowiska montazowego .................... 9
2.
Skrzypczynski D.: Parametry krytyczne robotow przemystowych w procesie doboru dla E SP ................. 13
3.
Tupaj S., Lunarski J.: Aspekty jakosciowe spawania
obrotowych, cienkosciennych korpusow................ 17
4.
Iagiaev E.E.: Управление технологическими опера-
• Technologicznosc konstrukcji wyrobow
• Systemy montazowe
• Operacje przedmontazowe i pomontazowe
• Konstrukcja i technologia pot^czen
• Narz^dzia i oprzyrz^dowanie
• Sterowanie i kontrola
• Przemieszczanie i orientowanie
• Ekonomika i organizacja
Redaguje Zespol
цями с помощью мониторинга технологических па­
Redaktor Naczelny: prof. dr hab. inz. Jerzy Lunarski
раметров ................................................................ 22
Czlonkow ie: dr inz. Katarzyna Antosz (eksploatacja, niezawodnosc)
5.
Permiakov A.A., Dzhemilov E.S.: Компоновка
и сборка многопозиционных агрегатных станков . 27
6.
Oron G., Galinski K.: Specjalistyczne uktady podawania i orientacji elementow...................................... 33
7.
Grzejda R.: Modelowanie styku w pot^czeniach srubowych w stanie montazowym z wykorzystaniem
MES ........................................................................ 36
8.
Zbrowski A., Samborski T.: Koncepcja systemu do
automatycznego montazu pacy tynkarskiej............ 40
9.
Skoczylas L, Skoczylas K.: Znaczenie doktadnosci
obliczen w badaniu istotnosci wptywu parametrow
procesu obrobki ...................................................... 45
mgr inz. Matgorzata Baranska
prof. dr hab. inz. Jozef Gawlik (automatyzacja i technologia)
mgr Anna Masse
dr hab. inz. Piotr Lebkowski (organizacja i zarz^dzanie)
mgr inz. Grzegorz Oron
mgr inz. Kazimierz Rychlik
dr hab. inz. Jerzy Stamirowski (informatyka i robotyka)
dr inz. Dorota Stadnicka (redaktor statystyczny)
dr hab. inz. Lukasz W^sierski (automatyka i konstrukcja)
Rada Programowa
P rzew odnicz^cy: prof. dr hab. inz. Wiestaw Szenajch
C zlonkow ie: prof. dr hab. inz. Bronius Baksys, Kowno, Litwa
dr hab. inz. Adam Barylski, prof. ndzw.
dr hab. inz. Jozef Bednarczyk
prof. dr hab. inz. Jan Burcan
prof. dr hab. inz. Michait L. Chejfec, Nowopotock, Biatorus
prof. dr hab. inz. Jozef Gawlik
prof. dr hab. inz. Jan Godzimirski
prof. dr hab. inz. Mikulas Hajduk, Koszyce, Stowacja
doc. dr inz. Radek Knoflicek, Brno, Czechy
prof. dr hab. inz. Mark Kristal, Wotgograd, Rosja
prof. dr hab. inz. Jozef Kuczmaszewski
10. Antosz K., Kuzdzat E.: Doskonalenie procesu przezbrajania maszyn montazowych z wykorzystaniem
metodySMED.......................................................... 49
11. Gabdullina A.Z., Rakishev B.B., Tlekenova K.A.:
Ensuring accuracy in multitasking machines ........... 54
12. Zielecki W., Pertowski R., Hajduk P.: Porownanie
nosnosci pot^czen nitowych wykonanych roznymi
metodami ................................................................. 57
dr hab. inz. Piotr Lebkowski, prof. ndzw.
prof. dr hab. inz. Jerzy Lunarski
prof. dr inz. Wtodzimierz Przybylski
prof. dr hab. inz. Feliks Stachowicz
prof. dr hab. inz. Franciszek Siemieniako |
dr hab. inz. Jerzy Stamirowski, prof. ndzw.
Od redakcji ....................................................................... 3
Prezentacje ...................................................................... 5
Nowe ksiqzki .................................................................... 6
Z prasy zagranicznej ....................................................... 7
Informacje dla autorow ................................................. 62
prof. dr hab. inz. Michat Styp-Rekowski
dr hab. inz. Lukasz W^sierski, prof. ndzw.
Wydawca:
prof. dr hab. inz. Wtadimir P. Woronienko, Moskwa, Rosja
Instytut Mechanizacji Budownictwa i Gornictwa Skalnego
02-673 Warszawa, ul. Racjonalizacji 6/8
prof. dr hab. inz. Anatolij S. Zenkin, Kijow, Ukraina
prof. dr hab. inz. Jan Zurek
Czasopismo notowane na liscie czasopism punktowanych
Ministerstwa Nauki i Szkolnictwa Wyzszego - 4 pkt.
Wydawnictwo dofinansowane przez Ministerstwo Nauki
i Szkolnictwa Wyzszego
Wersja pierwotna: elektroniczna
Cena:
15 zt (w tym 23% VAT)
Adres redakcji:
Instytut Mechanizacji Budownictwa i Gornictwa Skalnego
02-673 Warszawa, ul. Racjonalizacji 6/8
tel. 22 815 44 35, e-mail: [email protected]
www.tiam.pl
Czasopismo jest indeksowane w bazach BAZTECH oraz
INDEX COPERNICUS

Podobne dokumenty