T EE CC HH NN II KK AA O BB LL II CC ZZ EE NN II OO WW AA II S

Transkrypt

T EE CC HH NN II KK AA O BB LL II CC ZZ EE NN II OO WW AA II S
W O J S K O W A
A K A D E M I A
T E C H N I C Z N A
WYDZIAŁ ELEKTRONIKI
Drukować dwustronnie
TT EE CC HH NN II KK AA O
O BB LL II CC ZZ EE NN II O
OW
WA
A II S
S YY M
MU
U LL A
AC
CY
Y JJ N
NA
A
Grupa
Data wykonania ćwiczenia:
......+++.....................
Nazwisko i imię:
1.
2.
Ćwiczenie prowadził:
Ocena
...................................
Uwagi:
.........+++.........................
Podpis:
3.
SPRAW OZDANIE Z ĆW ICZENIA LABORATORYJNEGO
Temat:
Zaawansowane Metody Symulacji w Języku SPICE
1. ZADANIA
Zadanie 1.
Wykorzystać funkcje Probe do zobrazowania w SpiceNet przebiegów: napięć, prądów i rozpraszanych mocy we
wzmacniaczu z rys. 1. Parametry analiz: AC przedział częstotliwości 10Hz ÷ 10MHz, dokładność 100 pkt./dek., TRAN
wymuszenie w postaci bipolarnej fali prostokątnej o współczynniku wypełnienia 0.5, częstotliwości 1 kHz i amplitudzie
5 mV, krok czasowy 1µs, całkowity czas analizy czasowej (Total Analysis Time) 6 ms, wyprowadzenie wyników dla
zobrazowania pojedynczego okresu wymuszenia. Po uruchomieniu symulatora okienko Simulation Status pozostawiamy
aktywne. Wykorzystać wskazówki zawarte w p. 4.1.1. (ZMS_2016\SONDA\SONDA.DWG)
Rys. 1.
Zadanie 2.
Wyznaczyć stałoprądowe charakterystyki przejściowe wzmacniacza (rys. 2) dla rezystancji R2, zmienianej dyskretnie w
przedziale wartości od 20 kΩ do 100 kΩ z krokiem 20 kΩ. Przyjąć zakres zmian napięcia wejściowego (V1) od –1.5 V do
1.5 V z krokiem co 1 mV. Do deklaracji analizy wykorzystać pole Wizards w ustawieniach symulacji (Simulation
Setup/Analysis Wizard). Po przeprowadzeniu symulacji „odniesienia”, powrocie do SpiceNet, wybraniu do zmian wartości
rezystora R2 (w okienku Alter for R2 polu Sweep Mode) ustalić liniowy sposób zmiany rezystancji. Do wyprowadzenia
wyników symulacji wykorzystać wskazówki zawarte w p. 4.2.1. Określić wartości wzmocnień stałoprądowych,
przyrostowych oraz dostępne poziomy napięcia wyjściowego. (ZMS_2016\DCAC_PAR_ODO\ODO.DWG)
Rys. 2.
Sprawozdanie:
Zaawansowane metody symulacji w języku SPICE
str. 1 z 6
Wnioski i spostrzeżenia (do wszystkich zadań):
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
....................................................................................................................................................................................
Sprawozdanie:
Zaawansowane metody symulacji w języku SPICE
str. 2 z 6
Zadanie 3.
Przeprowadzić parametryczną analizę AC wzmacniacza z zadania poprzedniego dla identycznego sposobu zmian R2.
Analizę przeprowadzić w przedziale częstotliwości 100 Hz ÷ 1 MHz z dokładnością 100 pkt./dek. Porównać wartości
wzmocnień
z
wynikami
z
zadania
2.
Wykorzystać
wskazówki
zawarte
w
p.4.2.1.
(ZMS_2016\DCAC_PAR_ODO\ODO.DWG)
Zadanie 4.
Wykorzystać analizę parametryczna w celu wyznaczenia optymalnej wartości pojemności C_korpoj dla uzyskania
maksymalnie płaskiej charakterystyki amplitudowo częstotliwościowej wzmacniacza (rys.3). Wartość pojemności zmieniać
w przedziale 2 nF ÷ 20 nF z krokiem 2 nF. Po wstępnym (przybliżonym) oszacowaniu wartości pojemności dla
udokładnienia jej wartości przeprowadzić ponownie symulację z krokiem 0.2 nF w otoczeniu oszacowanej wartości.
Analizy przeprowadzić w przedziale częstotliwości 1 kHz ÷ 10 MHz z dokładnością 100 pkt./dek. Wykorzystać wskazówki
zawarte w p.4.2.1. (ZMS_2016\AC_PAR_KOR\KORPOJ.DWG)
Rys. 3.
Zadanie 5.
0
Przeprowadzić stałoprądową analizę temperaturową dzielnika rezystancyjnego (rys. 4) dla temperatur obwodu 27 C
0
i 127 C. Przyjąć dla R2 (w oknie Resistor Properties) wartości temperaturowych współczynników TC1=0.01, TC2=0.001,
0
temperaturę odniesienia TNOM=27 C. Źródło (DC) V1=10V. Porównać zapis deklaracji rezystorów R1 i R2 w wejściowym
0
pliku tekstowym (Action/Text Edit/Cir). Pierwszą symulację przeprowadzić dla temperatury 27 C (ustalonej w oknie
Simulation Setup/Circuit Temperature.../Circuit Temperature 27 deg). Wyniki z symulacji wyprowadzić w SpiceNet
(Options/Refresh OP Value) i zobrazować w IntuScope (wymaga deklaracji analizy czasowej bez deklaracji źródła
czasowego). Porównać wartości napięć z wartościami wyznaczonymi teoretycznie (zal. 4.1). Wykorzystać wskazówki
zawarte w p. 4.2.2. (ZMS_2016\TEM_R\DC_TEMPER.DWG)
Rys.4.
Zadanie 6.
Wykorzystać parametryczną analizę temperaturową (w przedziale temperatur od 20°C do 60°C z krokiem 20°C) do
wyznaczenia wpływu temperatury na stałoprądowe charakterystyki przejściowe modelu wzmacniacza operacyjnego
(rys. 5). Wyznaczyć: wzmocnienie otwartopętlowe wzmacniacza, wejściowe napięcie niezrównoważenia i cieplny
współczynnik zmian tego napięcia. Symulacje przeprowadzić w przedziale zmian napięcia źródła V1 od -2mV do –1.2mV z
krokiem 0.001mV. Wykorzystać wskazówki zawarte w p. 4.2.2. str 141. (ZMS_2016\TEM_PAR_WO\WO.DWG)
Sprawozdanie:
Zaawansowane metody symulacji w języku SPICE
str. 3 z 6
Rys. 5.
Zadanie 7.
Porównać własności „termiczne” wzmacniaczy (rys. 6) zrealizowanych z wykorzystaniem wybranych układów zasilania
i stabilizacji pp. Dla celów porównawczych wykorzystać analizę czasową. Parametry źródeł V1 i V3: sygnały sinusoidalne
o amplitudzie 10 mV i częstotliwości 10 kHz. Całkowity czas analizy czasowej 2,2 ms z krokiem 1µs, wyprowadzenie
0
wyników dla zobrazowania dwóch okresów przebiegu. W pierwszym kroku przeprowadzić symulację dla temperatury 27 C
i po wyprowadzeniu wyników (IntuScope Wy 1 i Wy 2) porównać wartości wzmocnień dla składowych zmiennych (menu
Calculator/Measurements/Peak too Peak). Następnie przeprowadzić parametryczną analizę temperaturową w przedziale
0
0
0
zmian temperatury od 30 C do 150 C z krokiem zmian 30 C. Ocenić własności układów poprzez porównanie uzyskanych
wyników symulacji (IntuScope). Wykorzystać wskazówki podane w p. 4.2.2. (ZMS_2016\TEM_RC_TRAN_PAR\RC.DWG)
Rys. 6.
Zadanie 8.
Przeprowadzić analizę Fouriera dla unipolarnej fali prostokątnej o amplitudzie A=1 V, częstotliwości 1 kHz i współczynniku
wypełnienia 0.5. Czas analizy dobrać dla pojedynczego okresu sygnału. Wykorzystać wskazówki zawarte w p. 4.2.3.
Symulacje poprzedzić obliczeniami poziomów składowych widma amplitudowego. Dla rozpatrywanego przebiegu
amplitudy składowych nieparzystych widma można wyznaczyć z zależności: składowa podstawowa
harmoniczna
2⋅ A
3Π
, piąta harmoniczna
2⋅ A
5Π
2⋅ A
Π
, trzecia
. Porównać wyniki z symulacji (dostępne w tekstowym pliku wyjściowym OUT)
z wartościami obliczonymi z podanych zależności. (ZMS_2016\FOURIER_PROST\FOUR_PROST.DWG)
Rys. 7.
Zadanie 9.
Korzystając z opisu sposobu przeprowadzenia małosygnałowej analizy zniekształceń nieliniowych rys. 4.32 (p. 4.2.4)
przeprowadzić symulacje wzmacniacza (rys. 8) z pojedynczym źródłem Disto F1 dla dwóch wartości amplitud sygnału
(2 mV i 4 mV) – deklaracje poziomów sygnałów wprowadza się w okienku własności Voltage Source Properties w wierszu
Disto F1. Przedział częstotliwości analizy przyjąć taki sam jak na str. 149. Ponieważ symulacje prowadzone są z
pojedynczym źródłem nie wypełniamy pola F2 over F1 w okienku Small Signal Distortion Analysis (wybieranym z
głównego okna ustawień symulacji – Simulation Setup). Przed uruchomieniem symulatora upewnić się czy w okienku Test
Point Properties (Y1) zadeklarowano gromadzenie wyników zniekształceń (Distortion – yes). Po wyprowadzeniu wyników
(z dwu symulacji) w IntuScope (z wykorzystaniem okienka Add Waveform Type – disto1) wykorzystać kursory do
porównania poziomów drugiej harmonicznej. Porównanie przeprowadzić w pełnym zakresie zdefiniowanych częstotliwości.
(ZMS_2016\DISTO\DISTIF1.DWG)
Sprawozdanie:
Zaawansowane metody symulacji w języku SPICE
str. 4 z 6
Rys. 8.
Zadanie 10.
Wzorując się na opisie symulacji przedstawionej w p. 4.2.5 przeprowadzić analizę szumową układu z rys. 9. (deklaracje
analizy wybieranym w głównym oknie ustawień symulacji – Simulation Setup – Noise..- Noise Analysis). Symbol
przypominający wzmacniacz operacyjny jest sterowanym napięciowo źródłem prądowym (G1 = 0.1 A/V). Przedział
częstotliwości analizy przyjąć taki sam jak na str. 152. Należy pamiętać o tym, że dla analizy szumowej należy
zadeklarować źródło V1 (AC) o amplitudzie 1V. Przed rozpoczęciem analizy szumowej przeprowadzić analizę AC. Po
wyprowadzeniu wyników z tej analizy w IntuScope wyznaczyć wzmocnienie i określić własności częstotliwościowe
wzmacniacza. Deklaracje parametrów analizy szumowej przedstawiają zawartości okienek z rys. 4.37 (wypełnianie
intuicyjnie). Po przeprowadzeniu symulacji dla analizy szumowej tylko wyniki obliczeń widmowych gęstości mocy można
wyprowadzić w IntuScope (wybieramy z okienka Add Waveform Type – noise 1, Y Axis – inoise, onoise). Te i pozostałe
charakterystyki szumowe dostępne są w wyjściowym pliku tekstowym wybranym z wykorzystaniem zakładki
Action/Text/Output. Porównać wyniki z symulacji z wartościami wyznaczonymi teoretycznie (bez wspomagania
komputerowego - strony 152 i 153). W ostatnim kroku przeprowadzić symulacje układu w celu wyznaczenia transmitancji
H1(f) i H2(f) (str.153). W celu wyznaczenia tej drugiej należy zmienić miejsce źródła odniesienia V1.
(ZMS_2016\ANSZUM\SZUM.DWG)
Rys. 9.
Zadanie 11.
Przeprowadzić statystyczną analizę (Monte Carlo – AC) pasywnego filtru środkowoprzepustowego (rys. 10) dla szerokości
pasma, wartości maksymalnej poziomu sygnału wyjściowego (minimalnego tłumienia) i częstotliwości środkowej.
Zadeklarować 10% tolerancje elementów, źródło sygnału V1 AC=1 V, ustalić parametry analizy częstotliwościowej (liniowa
zmiana częstotliwości, przedział częstotliwości 600 ÷ 1600 Hz, ilość punktów na dekadę 100). Wartości tolerancji
deklaruje się w okienkach Properties własności elementów w zakładkach Tolerance/Sweep/Optimize w polach Case.
Analizę statystyczną poprzedzić symulacją AC (dla wyznaczenia szerokość pasma filtru, częstotliwości środkowej i
minimalnej wartości tłumienia - wykorzystać dostępne funkcje pomiarowe). W kolejnym kroku dla przeprowadzenia analizy
Monte Carlo i wyprowadzenia wyników symulacji wykorzystać wskazówki podane w p. 4.2.7. str. 166 . (Wyniki
wyprowadzić w edytorze graficznym (IntuScope) i wyjściowym pliku tekstowym.) (ZMS_2016\ANMONTE\MONTE.DWG)
Rys. 10.
Sprawozdanie:
Zaawansowane metody symulacji w języku SPICE
str. 5 z 6
Zadanie 12.
Przeprowadzić stałoprądową analizę wrażliwości dzielnika rezystancyjnego (węzeł 2) i potencjometrycznego układu
zasilania i stabilizacji punktu pracy ze sprzężeniem emiterowym (węzeł 4 rys. 11). Wykorzystać wskazówki zawarte
w p. 4.2.6. Ustalono napięcia zasilające DC: 1V dla dzielnika rezystancyjnego i 12 V dla układu zasilania i stabilizacji
punktu pracy. Analizę wrażliwości przeprowadzamy w dwóch krokach. W pierwszym dla dzielnika rezystancyjnego, a w
drugim dla układu ustalającego PP. Analizę deklaruje się w okienku ustawień symulacji po wybraniu pola DC/AC
Sensitivity...(Simulation Setup/DC/AC Sensitivity). W pojawiającym się okienku DC and AC Sensitivity Analysis w polu DC
Output node voltage podajemy numer węzła dla którego będą prowadzone obliczenia (V(2)). Nie wypełniamy pól
dotyczących analizy AC. Wyniki obliczeń dostępne są w wyjściowym pliku tekstowym. Po wyprowadzeniu wyników
porównać je z wynikami otrzymanymi bez wspomagania komputerowego p.4.2.6. W drugim kroku przedstawiony sposób
postępowania stosujemy dla węzła nr. 4. Wykorzystać wyniki symulacji dla znalezienia rezystorów które mają największy
wpływ na zmiany potencjałów V2 i V4. (ZMS_2016\ANSENSITIVITY\SENSITIVITY.DWG)
Rys. 11.
Sprawozdanie:
Zaawansowane metody symulacji w języku SPICE
str. 6 z 6