Ćwiczenia nr 2

Transkrypt

Ćwiczenia nr 2
2 Całkowanie form różniczkowych i cykle termodynamiczne
2.1 Definicja całki z formy różniczkowej
Symbol
R
ω oznacza całka z formy ω po obszarze Ω. To jak praktycznie obliczyć
Ω
taką całkę zależy jakiego stopnia jest forma ω i co jest obszarem całkowania.
całkowanie 1-formy
Z
Z
a≡
ax dx + ay dy + az dz
(2.1)
L
Ω
czyli jest to całka pola wektorowego a~ wzdłuż krzywej L po obszarze jednowymiarowym. W notacji wektorowej:
Z
Z
~
a~ · dl
a≡
Ω
(2.2)
L
~ = (dx, dy, dz). Dla krzywej zadanej parametrycznie:
gdzie dl
L ≡ [x(y), y(t), z(t)] ,
t1 < t < t2
(2.3)
całka z formy wynosi
Z
a≡
Zt2 t1
Ω
ax
∂x
∂x
∂x + ay
+ az
dt
∂t
∂t
∂t
(2.4)
czyli jest to zwykla całka po parametrze t.
całkowanie 2-formy
Z
Z
b≡
Ω
bx dy ∧ dz + by dz ∧ dx + bz dx ∧ dy
(2.5)
S
Jest to całka z wektora b~ po powierzchni zorientowanej S. W notacji wektorowej
1
Z
Z
~
b~ · dS
b≡
Ω
(2.6)
S
~ = (dydz, dzdx, dxdy) jest wektorem reprezentującym element powierzchgdzie dS
ni dS, prostopadły do niego i skierowany na zewnątrz powierzchni
dS
dS
~ na kierunek osi x.
Na przykład dydz odpowiada rzutowi wektora dS
Tradycyjny sposób obliczania całek po powierzchniach jest opisany na przykład
w Analizie matematycznej Fichtenholza. Dzięki zapisowi z użyciem iloczynu
zewnętrznego obliczanie całki jest prostsze niż w tradycyjny sposób. Poza tym
nie trzeba pamiętać twierdzeń o zamianie zmiennych podczas całkowania.
Zadanie
Obliczyć całkę z formy dx ∧ dy po powierzchni sfery jednostkowej.
Formie dx∧dy odpowiada pole pseudowektorowe o niezerowej składowej bz = 1.
Do całkowania powierzchnię sfery jednostkowej najlepiej zadać parametrycznie:
x = cos ϕ sin θ
y = sin ϕ sin θ
z = cos θ
gdzie 0 < ϕ < 2π, 0 < θ < π
stąd
dx = − sin ϕ sin θ dϕ + cos ϕ cos θ dθ
dy = cos ϕ sin θ dϕ + sin ϕ cos θ dθ
2
a więc dx ∧ dy = sin θ cos θ dθ ∧ dϕ
Wykonaliśmy zamianę zmiennych kartezjańskich (x, y, z) na parametryczne (ϕ, θ),
co tradycyjnie wymagałoby obliczenia jakobianu. Pole sfery zostało przedstawione parametrycznie jako odwzorowanie prostokąta na płaszczyźnie (ϕ, θ). Należy
tylko sprawdzić, czy została zachowana orientacja powierzchni. Umowa jest taka,
~ skierowany na zewnątrz powierzchni razem z wersorami stycznymi
że wektor dS
do linii współrzędnych θ i ϕ stanowi trójkę prawoskrętną.
dS
e
eϕ
θ
S1
~ e~θ , e~ϕ ). Decyduje ona o znaku całki. Możemy już
Jak widać orientacja jest (dS,
obliczyć całkę
Zπ Z2π
R
dx ∧ dy =
sin θ cos θ dθ ∧ dϕ
S1
θ=0 ϕ=0
Z definicji taka całka jest równa zwykłej całce Riemanna i symbol ∧ można już
opuścić:
Zπ
R
dx ∧ dy = 2π sin 2θ dθ = 0.
S1
θ=0
Wynik jest oczywisty, bo całki powierzchniowe z wektora [0, 0, 1] po obu połówkach sfery się znoszą.
dS
dx dy
dS
3
całkowanie 3-formy
Z
Z
a=
a(x, y, z) dxdydz
(2.7)
V
Ω
Całka z 3-formy a jest równoważna całce funkcji skalarnej po objętości zorientowanej
V . Zapis elementu objętości przy użyciu iloczynu zewnętrznego
dV = dx ∧ dy ∧ dz
(2.8)
zawiera w sobie informację jak liczyć taką całkę. Jeśli dokonamy zamiany zmiennych całkowania:
(x, y, z) −→ (α, β, γ)
(2.9)
to forma bazowa przyjmie postać:
dx ∧ dy ∧ dz = |J| dα ∧ dβ ∧ dγ
(2.10)
gdzie:
|J| = ∂x
∂α
∂y
∂α
∂z
∂α
∂x
∂β
∂y
∂β
∂z
∂β
∂x
∂γ
∂y
∂γ
∂z
∂γ
(2.11)
jest jakobianem przekształcenia (2.9). Łatwo sprawdzić na przykład dla współrzędnych sferycznych, że
dx ∧ dy ∧ dz = r 2 sin θ dr ∧ dθ ∧ dϕ
2.2 Twierdzenie Stokesa
Z
(2.12)
Z
dω =
Ω
ω
(2.13)
∂Ω
Całka po obszarze Ω z pochodnej zewnętrznej dω jest równa całce po brzegu
obszaru ∂Ω z formy ω. Według książki Arnolda to twierdzenie powinno nazywać
4
się:
Newtona-Leibnitza-Gaussa-Ostrogradskiego-Stokesa-Poincarego.
Z twierdzenia Stokesa niewiele wynika dopóki nie rozpatrzy się form różniczkowych kolejnych stopni.
zastosowanie dla 0-form
W tym przypadku obszarem całkowania jest krzywa L. Brzegiem krzywej L są
jej końce a i b. Twierdzenie Stokesa przyjmuje postać
Z
d f = f (b) − f (a)
(2.14)
L
Otrzymaliśmy prosty wniosek, że całka z 1-formy zupełnej nie zależy od drogi
całkowania. W szczególności całka z 1-formy zupełnej po drodze zamkniętej
znika:
I
df = 0
(2.15)
L
zastosowanie dla 1-form
W tym przypadku obszarem całkowania jest powierzchnia S. Jej brzegiem jest
krzywa zamknięta L ją ograniczająca.
Z
Z
da =
S
a
(2.16)
L
W języku pól wektorowych:
Z
I
~ =
rot a~ · dS
S
~
a~ · dl
(2.17)
L
Jest to twierdzenie znane w analizie wektorowej jako twierdzenie Stokesa, bardzo
często używane w elektrodynamice.
5
zastosowanie dla 2-form
W tym przypadku obszarem calkowania jest objętość V . Brzegiem objętości V
jest powierzchnia zamknięta S ją ograniczająca.
Z
Z
da =
V
a
(2.18)
~
a~ · dS
(2.19)
∂V =S
W języku pól wektorowych:
Z
Z
div a~ =
V
S
Jest to twierdzenie znane w analizie wektorowej jako twierdzenie OstrogradskiegoGaussa. Także często stosowane w elektrodynamice.
W termodynamice mamy do czynienia głównie z formami 1 stopnia. Jeśli układ
termodynamiczny ma dwa stopnie swobody odpowiednie formy różniczkowe
ograniczają się do płaszczyzny. Dla termodynamiki ważny jest następujący wniosek z twierdzenia Stokesa: jeśli 1-forma różniczkowa nie jest zupełna to wynik
całkowania po krzywej z punktu A do B zależy od drogi całkowania. W szczególności całka po krzywej zamkniętej z formy niezupełnej nie jest równa zeru.
Zadanie
Dana jest forma:
ω = ydx − xdy
Sprawdzić, że nie jest ona zupełna i obliczyć jej całkę po okręgu jednostkowym.
Gdyby powyższa forma była zupełna, to zachodziło by:
∂f
∂f
dx +
dy
ω = df =
∂x
∂y
Co oznacza, że powinien być spełniony warunek:
∂ωy
∂ωx
∂2 f
∂2 f
=
=
=
∂y
∂y∂x ∂x∂y
∂x
6
Ten warunek nie jest jednak spełniony:
∂ωy
∂ωx
=1,
= −1
∂y
∂x
Całkując formę ω po okręgu jednostkowym dostajemy:
Z
Z
ω=
ydx − xdy
S1
S1
W układzie biegunowym:
dx = d(cos ϕ) = − sin ϕ dϕ
dy = d(sin ϕ) = cos ϕ dϕ
Z2π
(− sin2 ϕ − cos2 ϕ ) dϕ = 2π , 0
ϕ=0
2.3 Cykl termodynamiczny (proces kołowy)
Cyklem termodynamicznym nazywamy ciąg odwracalnych przemian termodynamicznych, w rezultacie którego układ powraca do stanu początkowego. Dla
układu o dwóch stopniach swobody na płaszczyźnie, na przykład w zmiennych
(p, V ), otrzymujemy zamkniętą krzywą całkowania form ciepła dQ
¯ i pracy dW
¯ .
Zmiana energii wewnętrznej układu w czasie cyklu wynosi zero
I
∆U =
dU = 0
(2.20)
ponieważ forma energii dU jest 1-formą zupełną.
Zmiana entropii w czasie cyklu także wynosi zero:
I
∆S =
I
dS =
dQ
¯
=0
T
(2.21)
dQ
¯
ponieważ T jest formą zupełną. Równość (2.21) nosi nazwę równości Clausiusa
dla procesów odwracalnych. Innymi słowy w odwracalnym cyklu termodynamicznym entropia nie ulega zmianie.
Różnica ciepła pobranego i oddanego do otoczenia przez układ termodynamiczny
w czasie cyklu jest różna od zera
7
I
∆Q =
dQ
¯ ,0
(2.22)
ponieważ forma ciepła dQ
¯ nie jest formą zupełną.
Rożnica pracy wykonanej przez układ i pracy wykonanej nad układem także jest
różna od zera
I
∆W =
dW
¯ ,0
(2.23)
ponieważ forma pracy dW
¯ nie jest formą zupełną. W celu wyznaczenia pracy
mechanicznej najlepiej stosować zmienne (p, V ).
ZB
W AB =
pdV
(2.24)
A
Praca wykonana w czasie przemiany A → B jest równa polu pod wykresem
przemiany w zmiennych (p, V )
W celu wyznaczenia ciepła dostarczonego do układu i pobranego przez układ
najwygodniej stosować zmienne (T, S).
ZB
Q AB =
T dS
(2.25)
A
Ciepło wymienione w czasie przemiany A → B jest równa polu pod wykresem
przemiany w zmiennych (T, S)
Z pierwszej zasady termodynamiki zastosowanej do procesu kołowego:
∆U = ∆Q + ∆W = 0
(2.26)
wynika, że pola pod wykresami dla cyklu kołowego w zmiennych (p, V ) i (T, S)
są sobie równe.
Praktyczne zastosowanie cykli termodynamicznych sprowadza się do obliczania
sprawności różnych cykli odpowiadających różnym urządzeniom technicznym.
8
Nazywa się to termodynamiką techniczną.
Zadanie
obliczyć sprawność cyklu Carnota (z roku 1824)
T
izoterma
izoterma
adiabata
adiabata
T2
T1
S2
S1
S
Q1 = T 1 (S2 − S1 ) — ciepło oddane do chłodnicy
Q2 = T 2 (S2 − S1 ) — ciepło pobrane od grzejnicy
Pole pod wykresem cyklu Carnota wynosi
∆Q = Q2 − Q1 = ∆W
i jest równe użytecznej praca wykonana przez układ
Sprawność cyklu wynosi
de f
Q2 − Q1
T1
=1− T
η = ∆W
Q2 = Q2
2
Zadanie
Pokazać, że sprawność dowolnego cyklu nie może być większa niż dla cyklu
Carnota.
.B. Rumer, M.X. Ryvkin Termodinamika, statistiqeska fizika i kinetika,
§ 9.
9
T
A
C
B
D
S
Wystarczy dowolny cykl otoczyć prostokątem reprezentującym odpowiadający
mu cykl Carnota. Oznaczając przez A, B, C, D dodatnie powierzchnie odpowiednich figur przedstawionych na rysunku możemy napisać:
C
Q pob. − Qodd.
η=
=
pob.
B+C +D
Q
pob.
odd.
A+ B+C
Q −Q
ηCarnota =
=
pob.
A+ B+C +D
Q
Jeśli miało by zachodzić η < ηCarnota to musiało by być
C
A+ B+C
<
B+C +D A+ B+C +D
czyli
2
© < AB + ©
©
©+½
© + BD + BC + ½
©+©
© + AD + B2 + ©
½
AC
BC
C½2 + ©
CD
AC
BC
CD
©
I C +©
To samo można pokazać korzystając z równości Clausiusa
wego procesu odwracalnego.
Patrz: M.A. Leontoviq, Vvedenie v termodinamiku, § 20.
Zadanie
Obliczyć sprawność następującego cyklu:
T
c
T2
a
T1 a
izoterma
adiabata
op
litr
po
b
S
10
dQ
¯
T = 0 dla koło-
Dane jest jedynie T 2 = 2T 1 . Równanie stanu czynnika roboczego jest dowolne!
Proces politropowy oznacza stałe ciepło właściwe w czasie cyklu:
dQ
¯ = CdT , gdzie C = const
Jest to szczególny proces w którym forma ciepła jest zupełna.
Rb
Rb
Qab = dQ
¯ = CdT = C(T 2 − T 1 ) = CT 1
a
a
Qac = T 1 (Sb − Sa )
ponieważ dQ
¯ = T dS
b
Z
Rb
dS = CdT
T
a
a
stąd
2
Sb − Sa = Cln T
T = Cln 2
1
Qac = CT 1 ln 2
Sprawność cyklu wynosi:
Q −Q
η = abQ ac = 1 − ln 2 ≈ 0,3
ac
Zadanie
Obliczyć sprawność turbiny gazowej czyli silnika turboodrzutowego. Uproszczony schemat działania takiego silnika jest następujący:
powietrze
.
sprezanie
,
w dyfuzorze
komora
spalania
.
rozprezanie
,
produkty
w dyszy
spalania
ciekle paliwo
H. Lombroso, Thermodynamique — Problèmes résolus, Rozdział 4
dane:
β — stopień sprężania w dyfuzorze
γ — wykładnik adiabaty, dla uproszczenia wspólny dla powietrza i produktów
spalania
11
Ten cykl (zwany cyklem Braytona) składa się z następujących przemian:
3
T
p=
2
con
st
∆Q = 0
4
∆Q = 0
1
st
p=
con
S
proces 1–2 adiabatyczne sprężanie powietrza w dyfuzorze
proces 2–3 spalanie paliwa pod stałym ciśnieniem p2 w komorze spalania
proces 3–4 adiabatyczne rozprężanie produktów spalania do dyszy
proces 4–1 ochładzanie produktów spalania pod ciśnieniem atmosferycznym p1
stopień sprężania:
p
β = p21
sprawność cyklu:
Q
η = 1 − Q14 =
23
gdzie Q14 — ciepło oddane przez produkty spalania do atmosfery, Q23 — ciepło
otrzymane wskutek spalania mieszanki.
T4 − T1
η =1− T
3 − T2
ponieważ w przemianie izobarycznej gazu doskonałego dQ
¯ = C p dT , więc przepływ ciepła jest proporcjonalny do różnicy temperatur na końcach przemiany.
Równanie adiabaty w zmiennych (p, T ) (sprawdzić):
p1−γ · T γ = const
stąd ponieważ p2 = p3 i p1 = p4 mamy
T 2 /T 1 = β 1−1/γ = T 3 /T 4
stąd sprawność turbiny:
12
T4 − T1
=1 − β 1/γ−1
· T 4 − β 1−1/γ · T 1
Rysunek przedstawia zależność sprawności cyklu Braytona od współczynnika
η =1−
β 1−1/γ
sprężania β, przy wykładniku adiabaty dla powietrza równym γ = 1,4.
In[1]:= Plot@1 - Β ^ H1  1.4 - 1L, 8Β, 1, 40<, Frame ® TrueD;
0.6
0.5
0.4
0.3
0.2
0.1
0
0
10
20
30
40
Stopień sprężania możliwy do uzyskania w dyfuzorze jest ograniczony przez
temperaturę T 2 , którą mogą wytrzymać jego ruchome metalowe części. Z równania adiabaty
!γ/(γ−1)
T2
p2
β=
=
p1
T1
Dla temperatury otoczenia T 1 = 300 K i T 2 = 900 K dostajemy na przykład
β = (1300/300)1,4/0,4 ≈ 47
Łatwo zauważyć, że sprawność cyklu Braytona wyrażona przez temperatury wynosi po prostu
T1
η =1−
T2
Wbrew pozorom sprawność cyklu Braytona jest mniejsza od sprawności odpowiadającego mu cyklu Carnota, ponieważ dla cyklu Carnota zamiast T 2 należałoby wziąć najwyższą temperaturę T 3 , którą osiąga spalana mieszanka paliwa i
powietrza.
13
Carnot
T
3
2
n
yto
a
r
4
B
1
S
Pierwszy na świecie latający samolot turboodrzutowy — He 178 z silnikiem
Heinkla o ciągu 4,4 kN uniósł się w powietrze 27 sierpnia 1939 roku.
Uwaga
Można mieć wątpliwości co do poprawności zastosowania tak prostych rozważań
termodynamicznych do opisu silnika turboodrzutowego. Przy każdym kolejnym
obiegu cyklu nowa porcja paliwa jest wtryskiwana do komory spalania i nowa
porcja powietrza jest zasysana przez dyfuzor. Nie można więc powiedzieć jaka
objętość gazu pełni rolę czynnika roboczego tego cyklu. W zasadzie mamy tu
do czynienia z układem otwartym, wymieniającym gaz z otoczeniem. Jest tak
dla cykli wszystkich silników spalających paliwo. Inaczej jest dla cyklu maszyny
parowej (cyklu Rankine’a), gdzie para wodna znajduje się w przybliżeniu w
obiegu zamkniętym. Dla cyklu maszyny chłodzącej (lodówki) czynnik chłodzący
także krąży w obiegu zamkniętym.
14