Lista zadań z kinematyki

Transkrypt

Lista zadań z kinematyki
Zestawy zadań z kinematyki dla IFT+IF
Zestaw Ia
1. Wyprowadzić wzory na maksymalną wysokość oraz zasięg w rzucie ukośnym odbywającym się
w polu siły ciężkości (dane są wartość prędkości początkowej v0 oraz kąt α, pomiędzy wektorem
prędkości a poziomem).
2. Wyprowadzić wzór na okres drgań wahadła matematycznego (dla małych wychyleń wahadła
z położenia równowagi) mając dane długość wahadła l oraz wartość przyspieszenia ziemskiego g.
3. W jakim czasie, ciało swobodnie spadające przebywa pierwszy centymetr drogi? (0.045s)
4. Po jakim czasie t spadnie ciało z wysokości ℎ = 30m (dziesięciopiętrowy budynek) i jaką uzyska
prędkość v po przebyciu tej drogi (opór powietrza zaniedbać); ݃ = 9.81m/‫ ݏ‬ଶ ? (2.47s, 24.26m/s)
5. Kolumna wojska o długości ݈ = 1.5 km przesuwa się wzdłuż drogi z prędkością ‫ = ݒ‬6km/h.
Z czoła kolumny wysyła dowódca motocyklistę z rozkazem na tył kolumny. Motocyklista jedzie
z prędkością ‫ݒ‬ଵ = 20km/h, nie zatrzymując się przekazuje rozkaz i wraca. Jak długo był
w drodze? (9.9 min)
6. Z określonego miejsca wyruszyły w tym samym kierunku dwa ciała: jedno ruchem jednostajnym
z prędkością ‫ = ݒ‬96m/s, a drugie ruchem jednostajnie przyspieszonym z prędkością początkową
‫ݒ‬଴ = 10m/s i przyspieszeniem ܽ = 8.8m/‫ ݏ‬ଶ . Po jakim czasie drugie ciało dogoni pierwsze?
(19.6s)
7. W jakim odstępie czasu T oderwały się dwie krople wody od krawędzi dachu, jeżeli po upływie
czasu ‫ = ݐ‬2.5s, licząc od oderwania się drugiej kropli, odległość między kroplami wynosiła
‫ = ݏ‬30m? (1s)
Zestaw Ib
1. Pociąg pospieszny poruszający się z prędkością ‫ݒ‬଴ = 18m/s zaczyna hamować i zatrzymuje się
w ciągu czasu ‫ = ݐ‬15s. Obliczyć wartość przyspieszenia a i drogę s przebytą przez pociąg do
momentu zatrzymania się, zakładając, że jego ruch podczas hamowania jest jednostajnie
opóźniony. (135m, 1.2m/s2)
2. Wyznaczyć czas spadania i prędkość końcową ciała spadającego z najwyższego punktu wzdłuż
cięciwy koła o promieniu r. Koło znajduje się w płaszczyźnie pionowej, cięciwa tworzy
z kierunkiem pionowym kąt α.
3. Kamień wyrzucony z wysokości ℎ = 2.1m nad poziomem Ziemi pod kątem ߙ = 45° do
poziomu, spadł na ziemię w odległości ‫ = ݏ‬42m od miejsca wyrzutu. Z jaką prędkością v kamień
został wyrzucony, jak długo był w ruchu i jaką maksymalną wysokość osiągnął? (19.9m/s, 2.98s,
12.2m)
4. Całkowicie elastyczna kula spada swobodnie na płaszczyznę pochyłą o kącie nachylenia
ߙ = 30°, przebywając drogę h do punktu zderzenia się, odbija się i uderza powtórnie tę
płaszczyznę w drugim punkcie. Znaleźć odległość tych punktów. (4h)
5. Oznaczając przez x odciętą punktu, w jakim znajduje się w chwili t ciało rzucone ukośnie
z prędkością v0 pod kątem α do góry, a przez y rzędną tego punktu, znaleźć równanie toru.
Z otrzymanego równania wyprowadzić wzory na wysokość rzutu oraz zasięg rzutu.
Przedyskutować wyniki w zależności od wartości kąta. Obliczyć czas trwania rzutu.
6. Struga wody opuszcza rurę z prędkością ‫ = ݒ‬30m/s pod kątem ߙ = 40° do poziomu. Na jakiej
wysokości trafia ona ścianę, znajdującą się w odległości ݀ = 60m od wylotu strugi (zaniedbać
tarcie powietrza)? (16.1m)
7. Obliczyć prędkość danego punktu w ruchu obrotowym Ziemi: a) na równiku, b) na szerokości
geograficznej ߮ = 48°24′. Obliczyć przyspieszenie odśrodkowe w punkcie o szerokości
geograficznej ߮. Promień kuli ziemskiej wynosi 6370km. Przyjąć, że doba gwiazdowa trwa
86164s. (0.49km/s, 0.326km/s, 2.38cm/s2)
Zestaw Ic
1. Równania ruchu dwóch punktów obserwowanych z danego układu współrzędnych wyglądają
następująco:
r1 (t ) = (0,2,0 ) + (3,1,2 )t + (1,1,0 )t 2
r2 (t ) = (1,0,1) + (0,2,1)t.
Znaleźć:
a) prędkość u punktu drugiego względem pierwszego,
b) przyspieszenie a punktu drugiego względem pierwszego.
2. Ruch punktu dany jest w układzie kartezjańskim układem równań:
x = ct cos bt ,
y = ct sin bt ,
gdzie b oraz c są stałymi współczynnikami dodatnimi. Znaleźć w biegunowym układzie
współrzędnych:
a) równanie ruchu punktu,
b) równanie toru punktu,
c) wartość wektora prędkości punktu,
d) wartość wektora przyspieszenia punktu,
e) składowe wektora przyspieszenia – styczną i normalną,
f) promień krzywizny toru punktu jako funkcję położenia punktu.
3) Po rzece płynie łódka ze stałą względem wody prędkością v1, prostopadłą do kierunku prądu.
Woda w rzece płynie wszędzie równolegle do brzegów, ale wartość jej prędkości zależy od
odległości od brzegów (rys. 1) i dana jest wzorem
‫ݒ‬ଶ = ‫ݒ‬଴ sin
గ௬
௅
,
gdzie v0, L – stałe (L jest szerokością rzeki). Znaleźć:
a) wartość wektora prędkości łódki względem nieruchomych brzegów,
b) kształt toru łódki (równanie toru).
y
L
‫ݒ‬ଶ = ‫ݒ‬଴ sin
0
గ௬
௅
v2
Rys. 1