1 - Wydział Elektrotechniki i Automatyki

Transkrypt

1 - Wydział Elektrotechniki i Automatyki
Politechnika Gdańska
Wydział Elektrotechniki i Automatyki
Katedra Inżynierii Systemów Sterowania
Podstawy Automatyki
Transmitancja operatorowa i widmowa systemu, znajdowanie
odpowiedzi w dziedzinie s i w dziedzinie czasu
Materiały pomocnicze do ćwiczeń – termin T6
Opracowanie:
dr inż. Kazimierz Duzinkiewicz
dr inż. Michał Grochowski
dr inż. Robert Piotrowski
dr inż. Tomasz Rutkowski
Transmitancja operatorowa
Zapis liniowego układu ciągłego w postaci równania różniczkowego n-tego rzędu nie jest
jedynym sposobem zapisu. Układ ten można również opisać w postaci transmitancji
operatorowej.
Niech s będzie operatorem takim, że:
sk =
dk
; k = 1,2, K ,n
dt k
(1)
Dodatkowo, niech Y ( s ) oraz U ( s ) będą transformatami Laplace'a odpowiednio sygnału
wyjścia y ( t ) oraz sygnału wejścia u ( t ) .
Przypominając, liniowy układ ciągły opisany równaniem różniczkowym n-tego rzędu można
przedstawić w postaci:
an
d n y (t )
dt
n
+ a n −1
d n −1 y ( t )
dt
n −1
+ K + a1
dy ( t )
dt
+ a0 y (t ) = bm
d mu ( t )
dt
m
+ b m −1
d m −1u ( t )
dt m −1
+ K + b1
du ( t )
dt
+ b0 u ( t )
(2)
gdzie: n ≥ m.
Korzystając z zależności (1) równanie (2) można zapisać w następującej postaci:
(a
n
s n + a n −1 s n −1 + K + a 1 s + a 0 ) ⋅ Y ( s ) = ( b m s m + b m −1 s m −1 + K + b 1 s + b 0 ) ⋅ U ( s )
(3)
Zatem, dla układu opisanego równaniem różniczkowym (2) można wyznaczyć transmitancję
operatorową (zakładając zerowe warunki początkowe):
m
m −1
Y ( s ) b m s + b m −1 s + K + b 1 s + b 0
G (s) =
=
U ( s ) a n s n + a n −1 s n−1 + K + a 1 s + a 0
def
(4)
Transmitancja operatorowa układu (funkcja przejścia układu) – stosunek transformaty
Laplace'a sygnału wyjściowego tego układu Y ( s ) do transformaty Laplace'a jego sygnału
wejściowego U ( s ) przy zerowych warunkach początkowych. Transmitancję operatorową
oznaczamy jako G ( s ) i jest ona funkcją argumentu zespolonego s.
Pierwiastki licznika transmitancji operatorowej to zera transmitancji operatorowej, zaś
pierwiastki mianownika transmitancji operatorowej to bieguny transmitancji operatorowej.
Transmitancja widmowa
Analiza częstotliwościowa układów dynamicznych służy do analizy układu ze względu na
jego zdolności przenoszenia sygnałów sinusoidalnych, badając zmiany, jakim ulega sygnał
tego typu po przejściu przez układ dynamiczny.
Podstawowym pojęciem
transmitancja widmowa.
charakteryzującym
powyższe
właściwości
układu
jest
W oparciu o twierdzenie Eulera dla liczb zespolonych:
e j ϕ = cos ϕ + j sin ϕ
(5)
możemy zapisać wejściowy sygnał harmoniczny w postaci:
u ( t ) = A1 (ω ) ⋅ ( cos ω t + j sin ω t ) = A1 (ω ) ⋅ e j ω t
(6)
gdzie: A1 – amplituda sygnału, ω – pulsacja sygnału, T – okres drgań
Odpowiedź układu na wymuszenie harmoniczne u ( t ) będzie również harmoniczna o takiej
samej pulsacji ω , ale o innej amplitudzie A 2 i przesunięta w fazie względem u ( t ) o kąt ϕ :
j ω t +ϕ ω
y ( t ) = A2 (ω ) ⋅  cos (ω t + ϕ (ω ) ) + j sin (ω t + ϕ (ω ) )  = A2 (ω ) ⋅ e ( ( ))
(7)
Podstawiając (6) i (7) do (2) mamy:
n
n −1
j ω t +ϕ ω
j ω t +ϕ ω
j ω t +ϕ ω
a n ( j ω ) ⋅ A 2 (ω ) ⋅ e ( ( ) ) + a n −1 ( j ω ) ⋅ A 2 (ω ) ⋅ e ( ( ) ) + K a 0 ⋅ A 2 (ω ) ⋅ e ( ( ) ) =
m
= b m ( j ω ) ⋅ A1 (ω ) ⋅ e j ω t + b m −1 ( j ω )
m −1
⋅ A1 (ω ) ⋅ e j ω t + K b0 ⋅ A1 (ω ) ⋅ e j ω t
(8
)
Z zależności (8) otrzymujemy:
n
n −1
j ω t +ϕ ( ω ) )
A 2 (ω ) ⋅ e (
⋅  a n ( j ω ) + a n −1 ( j ω ) + K a 0  =


= A1 (ω ) ⋅ e
jω t
m
m −1
⋅ b m ( j ω ) + b m −1 ( j ω ) + K b 0 


(9)
W konsekwencji dostajemy zależność na transmitancję widmową:
G ( jω ) =
m
m −1
n
n −1
b m ( j ω ) + b m −1 ( j ω )
a n ( j ω ) + a n −1 ( j ω )
+ K b0
+ K a0
=
A2 (ω )
A1 (ω )
⋅e
j ϕ (ω )
(10)
Transmitancję widmową można wyznaczyć także na podstawie transmitancji operatorowej
korzystając z podstawienia s = j ω :
G ( j ω ) = G ( s ) s= jω
(11)
Korzystając z zależności (11), transmitancję widmową można przedstawić w postaci modułu
L (ω ) = G ( j ω ) i argumentu ϕ (ω ) = arg G ( j ω ) :
G ( j ω ) = L (ω ) ⋅ e
j ϕ (ω )
= G ( jω ) ⋅e
j arg G ( j ω )
(12)
Z matematycznego punktu widzenia transmitancja widmowa jest wektorem, którego moduł
L (ω ) dla każdej pulsacji ω jest stosunkiem amplitudy sygnału wyjściowego A2 (ω ) do
amplitudy sygnału wejściowego A1 (ω ) (Rysunek 1):
L (ω ) = G ( j ω ) =
A 2 (ω )
(13)
A1 (ω )
zaś argumentem ϕ (ω ) jest przesunięcie fazowe sygnału wyjściowego względem sygnału
wejściowego:
ϕ (ω ) = arg G ( j ω )
(14)
Oczywiście transmitancję widmową (jak każdą liczbę zespoloną) można zapisywać również
w postaci algebraicznej wyodrębniając część rzeczywistą P (ω ) = Re G ( j ω )  i urojoną
Q (ω ) = Im G ( j ω )  :
G ( j ω ) = P (ω ) + j Q (ω ) = Re G ( j ω )  + j Im G ( j ω ) 
(15)
Między poszczególnymi wielkościami zachodzą następujące zależności (Rysunek 1):
L (ω ) = P 2 (ω ) + Q 2 (ω )
ϕ (ω ) = arc tg
(16)
Q (ω )
P (ω )
Q (ω)
P (ω 1) ω = 0
ω→ ∞
P (ω)
ϕ (ω 1)
L (ω 1)
Q (ω 1)
Rys. 1. Przykładowa charakterystyka amplitudowo – fazowa
Dla każdej pulsacji ω (np. ω = ω 1 ) transmitancja widmowa jest liczbą zespoloną i wyznacza
(
)
(
)
punkt o współrzędnych P (ω 1 ) ,Q (ω 1 ) . Punkt ten jest końcem wektora G j ω 1 o długości
L (ω 1 ) i kącie nachylenia ϕ (ω 1 ) .
Zadanie 1
Dany jest model matematyczny czwórnika RC (kondensator ładowany przez rezystor)
(Rysunek 2) postaci:
d u wy ( t )
dt
=−
1
1
⋅ u wy ( t ) +
⋅ u we ( t )
R ⋅C
R ⋅C
R
iR(t)
(17)
iobc(t)
iC(t)
uR(t)
uwe(t)
uC(t)
C
uwy(t)
Rysunek 2. Czwórnik RC
Jako wejście układu przyjąć u we ( t ) , jako wyjście u wy ( t ) .
Wyznaczyć transmitancję operatorową i widmową. Wyznaczoną transmitancję przedstawić w
postaci umożliwiającej odczytanie następujących wielkości:
wzmocnienie statyczne układu,
stałe czasowe układu,
zera i bieguny układu,
część rzeczywista transmitancji widmowej,
część urojona transmitancji widmowej.
Rozwiązanie Zadania 1
Dokonując transformaty Laplace’a zależności (17), zakładając zerowe warunki początkowe i
korzystając z własności liniowości transformaty Laplace’a mamy:
 d u wy ( t ) 
1
1
⋅ £ u we ( t ) 
£
⋅ £ u wy ( t )  +
=−
R ⋅C
R ⋅C 
 dt 
(18)
Uwzględniając własność transformaty Laplace'a związaną z mnożeniem przez stałą
uzyskujemy:
 d u wy ( t ) 
1
1
⋅ £ u we ( t ) 
£
⋅ £ u wy ( t )  +
=−
R ⋅C
R ⋅C 
 dt 
Po podstawieniu do wyrażenia (19) transformat odpowiednich pochodnych otrzymujemy:
(19)
s ⋅ U wy ( s ) = −
1
1
⋅U wy ( s ) +
⋅ U we ( s )
R ⋅C
R ⋅C
(20)
co po prostych przekształceniach pozwala uzyskać:
U we ( s ) = U wy ( s ) ⋅ ( s ⋅ R ⋅ C + 1)
(21)
Ostatecznie otrzymujemy transformatę sygnału wyjściowego do wejściowego przy zerowych
warunkach początkowych:
G (s) =
U wy ( s )
=
U we ( s )
1
s ⋅ R ⋅C + 1
(22)
Wyrażenie (22) umożliwia odczytanie wzmocnienia statycznego oraz stałej czasowej układu:
k = 1, T = R ⋅C .
Transmitancja operatorowa opisana zależnością (22) nie ma zer i zawiera jeden biegun:
1
1
=
.
T R ⋅C
Przekształcając transmitancję operatorową do transmitancji widmowej w pierwszej kolejności
w wyrażeniu (22) wprowadzamy operator widmowy poprzez podstawienie s = jω :
G ( jω ) =
1
jω ⋅ R ⋅C + 1
(23)
Następnie mnożąc licznik i mianownik przez liczbę sprzężoną do mianownika uzyskujemy:
G ( jω ) =
1− jω ⋅ R ⋅C
1+ jω ⋅ R ⋅C 1− jω ⋅ R ⋅C
1
⋅
(24)
co po prostych przekształceniach pozwala uzyskać:
G ( jω ) =
1
1 + (ω ⋅ R ⋅ C )
2
− jω ⋅
R ⋅C
1 + (ω ⋅ R ⋅ C )
2
(25)
Ostatecznie możemy wyodrębnić część rzeczywistą i urojoną transmitancji widmowej:
Re [G( jω )] =
1
1 + (ω ⋅ R ⋅ C )
Im [G( jω )] = −
2
ω ⋅ R ⋅C
2
1 + (ω ⋅ R ⋅ C )
(26)
(27)
Zadanie 2
Dany jest prosty model matematyczny pojazdu mechanicznego (Rysunek 3) postaci:
d 2x
µ dx 1
=− ⋅
+ ⋅ f (t )
2
dt
m dt m
(28)
x
f(t)
m
Rysunek 3. Uproszczony schemat pojazdu mechanicznego
gdzie:
f(t) – siła napędowa,
m – masa pojazdu,
µ – współczynnik tarcia tocznego,
x(t) – przesunięcie pojazdu w osi poziomej.
Jako wejście układu przyjąć f ( t ) , jako wyjście x ( t ) .
Wyznaczyć transmitancję operatorową i widmową. Wyznaczoną transmitancję przedstawić w
postaci umożliwiającej odczytanie następujących wielkości:
część rzeczywista transmitancji widmowej,
część urojona transmitancji widmowej.
Rozwiązanie Zadania 2
Dokonując transformaty Laplace’a zależności (28), zakładając zerowe warunki początkowe i
korzystając z własności liniowości transformaty Laplace’a mamy:
d 2x
µ d x
1

£ 2  = −£ ⋅
+ £  ⋅ f ( t )

m

d t 
m d t 
(29)
Uwzględniając własność transformaty Laplace'a związaną z mnożeniem przez stałą
uzyskujemy:
d 2x 
µ d x 1
£  2  = − ⋅ £   + ⋅ £  f ( t ) 
m dt  m
d t 
(30)
Po podstawieniu do wyrażenia (30) transformat odpowiednich pochodnych otrzymujemy:
s 2 ⋅ X ( s ) = −s ⋅
µ
m
⋅ X (s) +
1
⋅ F (s)
m
(31)
co po prostych przekształceniach pozwala uzyskać:
F (s) = X (s) ⋅(m ⋅ s 2 + µ ⋅ s)
(32)
Ostatecznie otrzymujemy transformatę sygnału wyjściowego do wejściowego przy zerowych
warunkach początkowych:
G (s) =
X (s)
F ( s)
=
1
m⋅s + µ ⋅s
(33)
2
Przekształcając transmitancję operatorową do transmitancji widmowej w pierwszej kolejności
w wyrażeniu (33) wprowadzamy operator widmowy poprzez podstawienie s = jω :
G ( jω ) =
1
2
m ⋅ ( jω ) + µ ⋅ j ⋅ ω
1
−m ⋅ ω + j µ ⋅ ω
=
(34)
2
Następnie mnożąc licznik i mianownik przez liczbę sprzężoną do mianownika uzyskujemy:
G ( jω ) =
1
−m ⋅ ω 2 − j µ ⋅ ω
⋅
−m ⋅ ω 2 + j µ ⋅ ω −m ⋅ ω 2 − j µ ⋅ ω
(35)
co po prostych przekształceniach pozwala uzyskać:
G ( jω ) =
−m ⋅ ω 2
2
( m ⋅ω ) + ( µ ⋅ω )
2
2
− j⋅
µ ⋅ω
2
( m ⋅ω ) + ( µ ⋅ω )
2
2
(36)
Ostatecznie możemy wyodrębnić część rzeczywistą i urojoną transmitancji widmowej:
Re [G( jω )] =
−m ⋅ω 2
2
( m ⋅ω ) + ( µ ⋅ω )
Im [G( jω )] = −
2
(37)
2
µ ⋅ω
2
( m ⋅ω ) + ( µ ⋅ω )
2
2
(38)
Znajdowanie odpowiedzi w dziedzinie czasu
Operację wyznaczania funkcji f(t) z danej transmitancji G(s) (tzw. oryginał funkcji G(s))
wykonuje się przy użyciu odwrotnej transformaty Laplace’a:
£ -1 {G (s )} =
 f (t ) t ≥ 0
1 c + j∞
st
∫ G (s ) e ds = 
2πj c − j∞
 0 t <0
(39)
gdzie c jest stałą, która jest większa od części rzeczywistych wszystkich punktów funkcji na
płaszczyźnie s, w których funkcja F ( s ) nie istnieje.
Równanie (39) opisuje całkowanie wzdłuż linii znajdującej się na płaszczyźnie s. Dla
prostych funkcji, operacja znajdowania odwrotnej transformaty operatorowej polega na
wyszukaniu odpowiedniej funkcji z tabeli transformat Laplace'a. Dla funkcji złożonych,
odwrotna transformata Laplace'a znajdowana jest przez rozkład na ułamki proste i następnie
przez zastosowanie tabeli transformat lub metodą liczenia residuów.
W metodzie rozkładu na ułamki proste, transmitancja G(s) powinna być przedstawiona w
postaci wymiernej. Przy spełnieniu warunków na fizyczną realizowalność układu (stopień
licznika nie może być większy od stopnia mianownika), szuka się pierwiastków mianownika
funkcji wymiernej G(s). Możliwe są następujące sytuacje:
pierwiastki rzeczywiste pojedyncze,
pierwiastki zespolone parami sprzężone,
pierwiastki wielokrotne.
Uwaga:
Szczegóły metody rozkładu na ułamki proste wraz z przykładami, zostały podane we
wcześniejszych materiałach pomocniczych.